
14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022), September 2022

A Perspective on Three Decades of
Software Robustness Assessment

Nuno Laranjeiro
cnl@dei.uc.pt

Outline

• Context

• Robustness assessment throughout the years

• Highlights and challenges

• Lessons learned with REST

2Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Context

3Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Source: instagram.com/citybestviews https://youtube.com/watch?v=n-iAyFZDgrE

Coimbra

Software and Systems Engineering Group

• 16 (+ 5) PhD members
• 34 PhD students
• ~20 MSc students
• https://www.cisuc.uc.pt/en/SSE

Software
Engineering

Dependability
and Security

AI in critical
applications

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

https://www.cisuc.uc.pt/en/SSE

Nuno’s background – Research
• Verification & Validation techniques
• Experimental dependability assessment
• Robustness testing
• Web services robustness, middleware (e.g.,

messaging)
• Security and interoperability assessment
• Blockchain security
• Machine learning to in software engineering

processes (V&V)
• https://eden.dei.uc.pt/~cnl

9Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Software robustness
assessment in
the last 3 decades

10Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Before this talk…

• Nuno Laranjeiro, João Agnelo, and Jorge Bernardino. 2021. A
Systematic Review on Software Robustness Assessment. ACM
Computing Surveys 54, 4, Article 89 (May 2022), 65 pages.
https://doi.org/10.1145/3448977

• Nuno Laranjeiro, João Agnelo and Jorge Bernardino. 2021. A Black
Box Tool for Robustness Testing of REST Services. IEEE Access, vol. 9,
pp. 24738-24754, 2021, doi: 10.1109/ACCESS.2021.3056505.

11Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Definitions

• Robustness is the degree to which a certain system or component
can operate correctly in the presence of invalid inputs or stressful
environmental conditions
• Robustness assessment aims at characterizing the behavior of a

system in presence of a particular class of faults (i.e., external faults)

12Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Motivation
• Software systems now support our daily lives
• Entertainment, business, healthcare, …

• Residual faults may be activated by erroneous or malicious inputs, or
stressfull conditions
• A software failure may lead to disastrous consequences
• Financial losses, safety issues

• Robustness assessment activities are essencial
• How does your autonomous car react in presence of a STOP sign?
• What if the STOP sign is slightly damaged?
• What if the camera system in your car malfunctions?
• How will your autonomous car operate during an earthquake? or during

road-side constructions?
13Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Motivation – Example 1

• Let’s have a look at this robustness assessment example

14

𝑥𝑥

−3−3

√𝑥

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Motivation – Example 2

• Another robustness assessment example

• https://www.youtube.com/watch?v=aFuA50H9uek

15Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

https://www.youtube.com/watch?v=aFuA50H9uek

Motivation

• Long period of known research on robustness evaluation

• Large number of works on robustness assessment

• Large heterogeinity of approaches and targeted systems

• No large-scale view of robustness assessment approaches

16Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

The process

• Reviewed research from 1990 – 2020

• Research strongly connected to AI/ML was not considered

• The systematic reviewing process lead to the identification of 145
works on robustness evaluation

17Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Open questions

• Which types of software systems are the subject of robustness evaluation?

• Which techniques are used to evaluate software robustness?

• Which are the targets used by software robustness evaluation approaches?

• Which types of faults are being used in software robustness evaluation?

• Which are the methods used to characterize robustness?

18Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Which types of software
systems are the subject of
robustness evaluation?

19Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Types of systems

• Operating systems
• General-purpose, including mobile

• Communication systems
• Network-centric systems, including protocol implementations

• Embedded systems
• Designed to handle a certain single specific task
• Often used in mission or safety-critical environments
• Time as an important property

20Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Types of systems

• Middleware
• Software components
• Commercial Off-the-shelf software and applications (COTS), that do not

overlap with other groups (namely, general purpose OS)
• Other reusable software (libraries)

• Web services
• HTTP-based, including SOAP services and web applications

• Autonomous and adaptive systems
• Systems that are able to adapt to environment changes
• Usually involve a feedback loop

21Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Distribution across time

22

A Systematic Review on Software Robustness Assessment 89:17

Fig. 8. Distribution of publications per system type over the years.

3 DISCUSSION
In this section, we discuss the main !ndings identi!ed during our analysis of the state of the art,
in perspective with the research questions presented earlier, in Section 1. We then highlight gaps
in the state of the art and identify open challenges for future research on robustness evaluation.

3.1 Research !estions Discussion
We begin by discussing research question RQ-1 Which types of software systems are the
subject of robustness evaluation?, for which we found relatively diverse target systems being
evaluated. However, we were able to !t the di"erent systems into seven groups that we consider to
be widely accepted classes of software. Figure 8 depicts the distribution and count of publications
per system type, over the whole period where research on software robustness was found.

As we can see in Figure 8, there has been a relatively large interest in the robustness evaluation
of operating systems, embedded systems, web services, and software components, although, by
nature, this latter type of software is a broad group. The evaluation of operating systems robustness
has received some exploratory attention in the early 1990s but has mostly developed in the late
1990s, due to the works on robustness conducted within the Ballista Project [104]. Afterwards, a
few works appeared, with authors bene!ting from the lessons learned by the work carried out
within the Ballista project and also proposing new approaches for operating system robustness
evaluation. Recently, the attention has shifted to mobile operating systems.

Communication systems have seen research being carried out in a few short bursts, spanning
about a decade and a half. Considering their long existence, they do not seem to be the typical case
of interest in robustness evaluation. Regarding embedded systems, the use of robustness evaluation
techniques has also been traditionally important (e.g., in aerospace systems). With the increasing
use and complexity of software in these systems (e.g., in modern vehicles) [28], it is not surprising
that the area is still active even considering the high speci!city of this type of systems. Research
on middleware has concentrated mostly around the late 2000’s, although we are considering also
middleware management systems, in which we also observe recent work being carried out, espe-
cially in cloud platforms. As mentioned, the Software components category is a typical target of
research, with particular expression in the popular years of COTS usage.

Web services robustness evaluation has seen a peak of research being carried out in the late
2000’s, with some work on Web Applications but with the majority focusing on SOAP web services.
Research interest has clearly stopped and, at the time of writing, we were also not able to identify
robustness evaluation research of more recent web service implementations, such as REST services.
Finally, and more recently, research has targeted Autonomous and adaptive systems, with most of
the works being published in the last decade. This is somewhat expectable, given the recent interest,
for instance, on autonomous and self-driving vehicles [23].

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for
Resilient Systems (SERENE 2022)

Operating systems

23

UNIX-like
49%

Android
15%

Win32
13%

Windows CE
13%

WinNT
10%

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

A classic example (Ballista project)

24

89:4 N. Laranjeiro et al.

Fig. 1. Ballista project approach for assessing operating systems robustness, adapted from Reference [103].

operating systems are discussed in Section 2.3. Table 1 summarizes the main types of systems,
techniques, main techniques targets, types of faults, and behavior classi!cation schemes used to
evaluate the robustness of operating systems. Note that some works use more than one technique
or type of fault (for example).

As an illustrative example, it is worthwhile mentioning the work by Koopman et al. [103]. The
work describes a portable robustness assessment method for evaluating the dependability of COTS
operating systems, which has been developed in the context of project Ballista and is based on fault
injection. The approach is carried out in a distributed manner, with the target computer running
the OS being tested, a Test process (responsible for carrying out the tests), and a Starter process
that initiates testing and carries out several startup tasks (e.g., opening sockets). Another computer
serves as a watchdog, receiving health check messages from the Test process. The overall setup
used is illustrated in Figure 1.

The approach works by !rst identifying a set of system calls in the operating system API, and
de!ning valid inputs used along with invalid inputs for each data type in the set of call parameters.
Invalid inputs, in general, represent special conditions or values holding particular characteristics,
which tend to be the source of robustness problems (e.g., NULL, 0, 1, −1, string over"ow, special
characters).

The proposed approach was applied to a set of UNIX-like operating systems by targeting the
kernel functions read, write, open, close, stat, and fstat, which mostly take as parameters
memory bu#ers, "ag parameters, bu#er lengths, and !le names and are in part associated with
prede!ned sets of values. For instance, in the case of !le handles, the authors considered the value
−1, NULL and handles to a (i) valid but closed !le, (ii) valid but opened !le, or (iii) to a deleted !le.

The authors propose a scale for qualitative categorization of robustness faults based on the
severity of the failure, named CRASH. The !ve categories of this scale are as follows: Catastrophic
(operating system crashes or multiple tasks a#ected), Restart (process hangs and requires restart),
Abort (process aborts), Silent (exception was not signaled but should have been), and Hindering
(incorrect exception signaled). Despite the maturity of the tested systems, results showed signi!-
cant failures in the ability to gracefully or correctly handle exceptional conditions.

Johansson et al. [88] also use robustness testing to understand the error propagation in oper-
ating systems. The technique is based on the interception of calls at the interface between the
operating system and driver and using fault injection to create corrupt parameters. The authors
aim at output parameters of driver services and also the input parameters for the OS-driver service
and use boundary input values (e.g., INT_MIN, INT_MAX) and invalid inputs (e.g., previous value
−1, previous value + 1, 1, 0, 1). The authors conducted experiments using Windows CE and were
able to observe several cases of failures. Observed behavior was marked with one of four categories
(including a “no failure” category). Class 1 refers to a failure that, however, does not violate the

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Approach

• Set of system calls in the operating system API
• Definition of valid inputs used along with invalid inputs for each data

type in the call parameters
• Invalid inputs – values holding particular characteristics, which tend

to be the source of robustness problems (e.g., NULL, 0, 1, −1, string
overflow, special characters).
• Mature systems, but… results showed significant failures in the

ability to gracefully or correctly handle exceptional conditions.

25Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Failure classification

• Catastrophic (operating system crashes or multiple tasks affected)
• Restart (process hangs and requires restart)
• Abort (process aborts)
• Silent (exception was not signaled but should have been)
• Hindering (incorrect exception signaled)

26Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Failure classification

• Catastrophic (operating system crashes or multiple tasks affected
• Restart (process hangs and requires restart)
• Abort (process aborts)
• Silent (exception was not signaled but should have been)
• Hindering (incorrect exception signaled)

27Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Operating Systems (highlights) (1)

• Testing is the main approach among OS
• Combination of valid and invalid inputs
• Kernel as starting point
• Challenges
• Good quality workloads are important

• Code/functionality coverage
• Difficult to identify certain types of failures

• Observation points and oracles

• Application to multi-version software
• Check the conformance to standards

28Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Operating Systems (highlights) (2)

• Focus on better workloads

• From kernel to libraries, utilities, drivers

• Same programming mistakes repeatedly observed over time

• Move from traditional to mobile operating systems

29Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Distribution across time

30

A Systematic Review on Software Robustness Assessment 89:17

Fig. 8. Distribution of publications per system type over the years.

3 DISCUSSION
In this section, we discuss the main !ndings identi!ed during our analysis of the state of the art,
in perspective with the research questions presented earlier, in Section 1. We then highlight gaps
in the state of the art and identify open challenges for future research on robustness evaluation.

3.1 Research !estions Discussion
We begin by discussing research question RQ-1 Which types of software systems are the
subject of robustness evaluation?, for which we found relatively diverse target systems being
evaluated. However, we were able to !t the di"erent systems into seven groups that we consider to
be widely accepted classes of software. Figure 8 depicts the distribution and count of publications
per system type, over the whole period where research on software robustness was found.

As we can see in Figure 8, there has been a relatively large interest in the robustness evaluation
of operating systems, embedded systems, web services, and software components, although, by
nature, this latter type of software is a broad group. The evaluation of operating systems robustness
has received some exploratory attention in the early 1990s but has mostly developed in the late
1990s, due to the works on robustness conducted within the Ballista Project [104]. Afterwards, a
few works appeared, with authors bene!ting from the lessons learned by the work carried out
within the Ballista project and also proposing new approaches for operating system robustness
evaluation. Recently, the attention has shifted to mobile operating systems.

Communication systems have seen research being carried out in a few short bursts, spanning
about a decade and a half. Considering their long existence, they do not seem to be the typical case
of interest in robustness evaluation. Regarding embedded systems, the use of robustness evaluation
techniques has also been traditionally important (e.g., in aerospace systems). With the increasing
use and complexity of software in these systems (e.g., in modern vehicles) [28], it is not surprising
that the area is still active even considering the high speci!city of this type of systems. Research
on middleware has concentrated mostly around the late 2000’s, although we are considering also
middleware management systems, in which we also observe recent work being carried out, espe-
cially in cloud platforms. As mentioned, the Software components category is a typical target of
research, with particular expression in the popular years of COTS usage.

Web services robustness evaluation has seen a peak of research being carried out in the late
2000’s, with some work on Web Applications but with the majority focusing on SOAP web services.
Research interest has clearly stopped and, at the time of writing, we were also not able to identify
robustness evaluation research of more recent web service implementations, such as REST services.
Finally, and more recently, research has targeted Autonomous and adaptive systems, with most of
the works being published in the last decade. This is somewhat expectable, given the recent interest,
for instance, on autonomous and self-driving vehicles [23].

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for
Resilient Systems (SERENE 2022)

Communication systems

31

Application
75%

Link
9%

Network
8%

Transport
8%

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Common approach

• Testing and Test Control Notation Version 3 (TTCN-3)
• A strongly typed testing language used in conformance testing of

communicating systems

32

89:6 N. Laranjeiro et al.

Fig. 2. TTCN-3 robustness test cases generation in Reference [173].

within the system instead of being generated by an external testing tool, (ii) injection is performed
considering returning calls to drivers, and (iii) the failure mode scale has a lower granularity.

Work on operating system robustness assessment has !rst targeted the kernel, perhaps most no-
tably with the work carried out within the Ballista project [101–104, 155]. The usual cross-cutting
concept is the presence of a testing tool that exercises the kernel via a certain API (e.g., Portable
Operating System Interface (POSIX)) and uses a combination of valid and invalid inputs (e.g.,
boundary value inputs, anomalous, infrequent) to carry out the tests. The !rst works on robust-
ness testing shared similar components, namely the use of a workload (e.g., calls to the system
with valid values to assess its normal behavior), a faultload (e.g., a set of faults to inject on call
parameters), and a way to classify failures (e.g., the CRASH scale). Some di"culties started to be-
came obvious, namely the need for having good quality workloads (e.g., with high coverage of
functionality or code), or the di"culty in identifying certain failures (which imply using the right
observation point and possessing a high quality oracle).

Robustness assessment evolved and was later applied to multi-version software, allowing to
evaluate the degree of conformance of di#erent implementations to standards [101, 104], a concept
that has also remained in use throughout the years in several studies [96, 134, 211]. This type of
assessment procedure was then evolved for allowing comparison by considering functional groups
[139, 155]. Some focus started to appear on obtaining better workloads [70, 179] and then focus
started moving out of the kernel to libraries [179], utilities [64, 70, 139, 141], or drivers [3, 41, 56].
In Reference [139], Miller et al. noted that in overtime, the same programming mistakes were
continuously observed [64, 140, 141], at least regarding operating system utilities. More recently,
attention has been shifted to mobile operating systems [60, 126, 178]. Overall, the challenges and
the needs to de!ne speci!c evaluation techniques have become clear, throughout the period of
analysis.

2.2 Communication Systems
In this subsection, we describe research that focuses on robustness evaluation of communication
systems (e.g., network protocol implementations). Considering that most current software systems
make use of network communication, including some cases of truly network-centric devices (e.g.,
sensor networks), robust communication may be an essential asset in many scenarios, for which
research has been carried out throughout the years. Table 2 presents an overview of the research
found addressing communication systems, including the target TCP/IP layer [188], techniques
used and their targets, and the types of faults applied.

Saad-Khorchef et al. [173] propose a framework for generating robustness test cases for com-
munication systems, which is centered around a tool named Robustness Test Cases Generator and
is represented in Figure 2.

From a speci!cation of the nominal system behavior (i.e., behavior under normal conditions),
written in the Speci!cation and Description Language and represented in the form of an Input-
Output Labelled Transition System (IOLTS), a mutated version is obtained, called the increased

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Communication systems (highlights)

• One of the least explored groups
• Session Initiation Protocol as the frequent case study
• Frequent use of TTCN-3
• Prevalence of model-based approaches

33Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Distribution across time

34

A Systematic Review on Software Robustness Assessment 89:17

Fig. 8. Distribution of publications per system type over the years.

3 DISCUSSION
In this section, we discuss the main !ndings identi!ed during our analysis of the state of the art,
in perspective with the research questions presented earlier, in Section 1. We then highlight gaps
in the state of the art and identify open challenges for future research on robustness evaluation.

3.1 Research !estions Discussion
We begin by discussing research question RQ-1 Which types of software systems are the
subject of robustness evaluation?, for which we found relatively diverse target systems being
evaluated. However, we were able to !t the di"erent systems into seven groups that we consider to
be widely accepted classes of software. Figure 8 depicts the distribution and count of publications
per system type, over the whole period where research on software robustness was found.

As we can see in Figure 8, there has been a relatively large interest in the robustness evaluation
of operating systems, embedded systems, web services, and software components, although, by
nature, this latter type of software is a broad group. The evaluation of operating systems robustness
has received some exploratory attention in the early 1990s but has mostly developed in the late
1990s, due to the works on robustness conducted within the Ballista Project [104]. Afterwards, a
few works appeared, with authors bene!ting from the lessons learned by the work carried out
within the Ballista project and also proposing new approaches for operating system robustness
evaluation. Recently, the attention has shifted to mobile operating systems.

Communication systems have seen research being carried out in a few short bursts, spanning
about a decade and a half. Considering their long existence, they do not seem to be the typical case
of interest in robustness evaluation. Regarding embedded systems, the use of robustness evaluation
techniques has also been traditionally important (e.g., in aerospace systems). With the increasing
use and complexity of software in these systems (e.g., in modern vehicles) [28], it is not surprising
that the area is still active even considering the high speci!city of this type of systems. Research
on middleware has concentrated mostly around the late 2000’s, although we are considering also
middleware management systems, in which we also observe recent work being carried out, espe-
cially in cloud platforms. As mentioned, the Software components category is a typical target of
research, with particular expression in the popular years of COTS usage.

Web services robustness evaluation has seen a peak of research being carried out in the late
2000’s, with some work on Web Applications but with the majority focusing on SOAP web services.
Research interest has clearly stopped and, at the time of writing, we were also not able to identify
robustness evaluation research of more recent web service implementations, such as REST services.
Finally, and more recently, research has targeted Autonomous and adaptive systems, with most of
the works being published in the last decade. This is somewhat expectable, given the recent interest,
for instance, on autonomous and self-driving vehicles [23].

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for
Resilient Systems (SERENE 2022)

Embedded systems

• Strong focus on real-time
• Traditionally important in aerospace
• Increasingly important in autonomous

systems

35

RTOS
36%

Aerospace
21%

Reactive
18%

Real-time
systems

18%

Embedded
distributed

systems
3%

Microkernels
4%

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Evaluation of an embedded system

36

89:8 N. Laranjeiro et al.

Fig. 3. Robustness evaluation of an embedded system (inspired by the approach in Reference [18]).

messages tend to rely on other types of faults that a!ect the whole message, namely by apply-
ing some variation of Move, Add, Change, Delete (MACD) operations, like just reordering or
omitting messages [87, 94, 195]. We found timing faults [35] or inopportune faults [173] to be less
explored in robustness evaluation research, despite their usefulness in respectively triggering tim-
ing failures or in triggering failures that can only be observed after placing the system in a certain
state.

2.3 Embedded Systems
In this subsection, we present selected research that evaluates the robustness of embedded sys-
tems, which are systems that are typically designed to target a speci"c task (in contrast with a
general purpose computer) and are often part of larger systems that serve a more general purpose.
Usually, their operation has to ful"ll timing constraints (e.g., real-time systems) or deal with safety
properties (e.g., in the aerospace domain) [16, 114]. Table 3 overviews the main characteristics of
the di!erent approaches for embedded systems found in the literature.

Figure 3 represents a common case of robustness evaluation of an embedded system, which was
adapted from Reference [18] and has been modi"ed and extended for clarity.

Figure 3 shows a system composed of three subsystems named A, B, and C. Subsystem A serves
as an interface to the outside world and partially relies on subsystem B, which in turn relies on
subsystem C. B and C have actuators that interact with the physical world. A fault injector (part of
a testing framework) has been added to the system with the purpose of intercepting messages and
applying faults. Typical cases of faults are messages holding invalid contents, but in this context,
there is special interest in timing faults (e.g., delayed messages) so that it is possible to verify if
the system ful"lls the expected real-time properties (in the presence of a timing fault a!ecting a
subsystem).

Arlat et al. [9] present the Microkernel Assessment by Fault injection AnaLysis and De-
sign Aid (MAFALDA), a tool for assessing the behavior of microkernels in the presence of faults,
from both external and internal perspectives. The former perspective is based on injecting faults
in the parameters of calls to the microkernel API and assessing its robustness at the interface
level. Faults are injected by randomly selecting and #ipping one bit among the set of call param-
eters. The internal perspective also relies on bit-#ips applied to the microkernel code and data
segments within its address space and intends to emulate both physical and (development-related)
software faults to assess the coverage of internal error detection mechanisms. A fault injection
campaign is composed of the following: fault-less workload execution to assess normal operating
behavior, a faultload execution where the workload is executed and faults are occasionally injected,
and behavior characterization according to three distinct levels: application level (one of applica-
tion failures or application hang) and interface level (one of error status or exception); and kernel

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Embedded systems (highlights)

• Techniques used at very diverse abstraction levels
• From system interfaces to processor registers

• Faults used are also quite diverse
• Interface parameter mutations (e.g., invalid or boundary values)
• bit-flips on processor registers
• message-level faults (e.g., reordering messages)
• timing faults.

37Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Distribution across time

38

A Systematic Review on Software Robustness Assessment 89:17

Fig. 8. Distribution of publications per system type over the years.

3 DISCUSSION
In this section, we discuss the main !ndings identi!ed during our analysis of the state of the art,
in perspective with the research questions presented earlier, in Section 1. We then highlight gaps
in the state of the art and identify open challenges for future research on robustness evaluation.

3.1 Research !estions Discussion
We begin by discussing research question RQ-1 Which types of software systems are the
subject of robustness evaluation?, for which we found relatively diverse target systems being
evaluated. However, we were able to !t the di"erent systems into seven groups that we consider to
be widely accepted classes of software. Figure 8 depicts the distribution and count of publications
per system type, over the whole period where research on software robustness was found.

As we can see in Figure 8, there has been a relatively large interest in the robustness evaluation
of operating systems, embedded systems, web services, and software components, although, by
nature, this latter type of software is a broad group. The evaluation of operating systems robustness
has received some exploratory attention in the early 1990s but has mostly developed in the late
1990s, due to the works on robustness conducted within the Ballista Project [104]. Afterwards, a
few works appeared, with authors bene!ting from the lessons learned by the work carried out
within the Ballista project and also proposing new approaches for operating system robustness
evaluation. Recently, the attention has shifted to mobile operating systems.

Communication systems have seen research being carried out in a few short bursts, spanning
about a decade and a half. Considering their long existence, they do not seem to be the typical case
of interest in robustness evaluation. Regarding embedded systems, the use of robustness evaluation
techniques has also been traditionally important (e.g., in aerospace systems). With the increasing
use and complexity of software in these systems (e.g., in modern vehicles) [28], it is not surprising
that the area is still active even considering the high speci!city of this type of systems. Research
on middleware has concentrated mostly around the late 2000’s, although we are considering also
middleware management systems, in which we also observe recent work being carried out, espe-
cially in cloud platforms. As mentioned, the Software components category is a typical target of
research, with particular expression in the popular years of COTS usage.

Web services robustness evaluation has seen a peak of research being carried out in the late
2000’s, with some work on Web Applications but with the majority focusing on SOAP web services.
Research interest has clearly stopped and, at the time of writing, we were also not able to identify
robustness evaluation research of more recent web service implementations, such as REST services.
Finally, and more recently, research has targeted Autonomous and adaptive systems, with most of
the works being published in the last decade. This is somewhat expectable, given the recent interest,
for instance, on autonomous and self-driving vehicles [23].

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for
Resilient Systems (SERENE 2022)

Middleware

• Heterogeneous category

• Mainstream (CORBA, JMS, DDS)

• High availability middleware/architecture

• Management platforms (cloud)

39

HA
middleware

42%

Cloud
platforms

33%

Message-
oriented

middleware
17%

CORBA
8%

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

MOM example

40

A Systematic Review on Software Robustness Assessment 89:11

Fig. 4. Robustness evaluation of the middleware supporting a distributed system, inspired by Refer-
ence [110].

Laranjeiro et al. [110] uses Aspect Oriented Programming to inject boundary and exceptional
values (e.g., null or empty values, maximum or minimum value of a data type) into JMS messages
leaving a message producer. Test execution is composed of three phases: (i) observing normal
behavior by sending valid JMS messages, (ii) exchanging mutated messages between client and
provider, and (iii) sending valid messages again and attempt to disclose problems caused by the
previous phase. Failures are classi!ed with a CRASH [104] scale adaptation, and compliance with
the JMS speci!cation is also checked. A few cases of robustness problems were disclosed, including
severe Denial of Service vulnerabilities.

Regarding robustness assessment of middleware, we !nd three main cases of software being
tested. Mainstream middleware like Common Object Request Broker Architecture (CORBA)
[156], JMS [110], or even Data Distribution Service (DDS) [147] is one of the targets. The second
case concerns less popular middleware like high availability middleware [14, 106, 137, 138] or the
High Level Architecture [14]. The third case concerns software that is designed to support other
systems [32, 36], in particular cloud management platforms like the Apache Virtual Computing
Lab [45] or OpenStack [31].

Most of the studies use traditional robustness testing approaches with adaptations to !t spe-
ci!c contexts (e.g., the works in References [106, 138] apply a less usual fault model that includes
swapping calls); however, we do !nd a few using model-based approaches where the behavior or
a speci!cation of the system is modelled and then used to generate test cases [32, 137]. The work
by Cardoso and Martins [32] goes one step further and applies a search-based test case generation
technique.

A common case is the injection of faults in call parameters [62, 147] (e.g., invalid inputs, inop-
portune inputs—used at a wrong system state). Some approaches ignore the parameters and target
the calls themselves by omitting or swapping them [106, 138]. A few studies also inject faults in
return values of API calls [106, 138]. More recently, we !nd unusual types of faults, e.g., with cloud
components being shutdown [36].

2.5 So!ware Components and Applications
This subsection mostly targets COTS software components and applications and, in general, soft-
ware that is built to be reusable (e.g., software libraries). The increasing use of COTS in dependable
systems makes robustness of special importance, especially in cases like mission-critical systems.
Table 5 characterizes existing studies.

Ghosh and Schmid [69] present an approach for assessing the robustness of COTS applications
against faults in external components (e.g., faulty OS functions), requiring only access to the inter-
face of the application under test. Figure 5 shows a graphical representation of this approach.

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Distribution across time

41

A Systematic Review on Software Robustness Assessment 89:17

Fig. 8. Distribution of publications per system type over the years.

3 DISCUSSION
In this section, we discuss the main !ndings identi!ed during our analysis of the state of the art,
in perspective with the research questions presented earlier, in Section 1. We then highlight gaps
in the state of the art and identify open challenges for future research on robustness evaluation.

3.1 Research !estions Discussion
We begin by discussing research question RQ-1 Which types of software systems are the
subject of robustness evaluation?, for which we found relatively diverse target systems being
evaluated. However, we were able to !t the di"erent systems into seven groups that we consider to
be widely accepted classes of software. Figure 8 depicts the distribution and count of publications
per system type, over the whole period where research on software robustness was found.

As we can see in Figure 8, there has been a relatively large interest in the robustness evaluation
of operating systems, embedded systems, web services, and software components, although, by
nature, this latter type of software is a broad group. The evaluation of operating systems robustness
has received some exploratory attention in the early 1990s but has mostly developed in the late
1990s, due to the works on robustness conducted within the Ballista Project [104]. Afterwards, a
few works appeared, with authors bene!ting from the lessons learned by the work carried out
within the Ballista project and also proposing new approaches for operating system robustness
evaluation. Recently, the attention has shifted to mobile operating systems.

Communication systems have seen research being carried out in a few short bursts, spanning
about a decade and a half. Considering their long existence, they do not seem to be the typical case
of interest in robustness evaluation. Regarding embedded systems, the use of robustness evaluation
techniques has also been traditionally important (e.g., in aerospace systems). With the increasing
use and complexity of software in these systems (e.g., in modern vehicles) [28], it is not surprising
that the area is still active even considering the high speci!city of this type of systems. Research
on middleware has concentrated mostly around the late 2000’s, although we are considering also
middleware management systems, in which we also observe recent work being carried out, espe-
cially in cloud platforms. As mentioned, the Software components category is a typical target of
research, with particular expression in the popular years of COTS usage.

Web services robustness evaluation has seen a peak of research being carried out in the late
2000’s, with some work on Web Applications but with the majority focusing on SOAP web services.
Research interest has clearly stopped and, at the time of writing, we were also not able to identify
robustness evaluation research of more recent web service implementations, such as REST services.
Finally, and more recently, research has targeted Autonomous and adaptive systems, with most of
the works being published in the last decade. This is somewhat expectable, given the recent interest,
for instance, on autonomous and self-driving vehicles [23].

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for
Resilient Systems (SERENE 2022)

Software components

• COTS applications and components

• Mobile and wearables

42

COTS
applications

42%

COTS
components

23%

Mobile
applications

11%

COTS DBMS
8%

Wearable
applications

8%

GUI
applications

4%

Stateful
applications

4%

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Software components example

• Fault injection as common technique
• Code changes injection second main technique
• API calls and also machine code as targets
• Invalid and random inputs

43

A Systematic Review on Software Robustness Assessment 89:13

Fig. 5. Robustness evaluation of a COTS application with emulation of a faulty Operating System [69].

The approach works by implementing a wrapper between the application interface and the OS,
which is then used to emulate faulty behavior (e.g., memory errors, I/O issues). When the target
application performs calls to the external system, the wrapper either replaces call parameters with
invalid values that are known to cause exceptions, or it directly replaces return values (from the
original, valid call) with exceptions or error codes. The proposed approach has been implemented
by the authors in the form of a Windows NT tool named the Failure Simulation Tool and relies
merely on the distinction between robust or non-robust behavior.

Research on software components and applications covers a large time period, ranging from
the late 1990s [69] to very recent years [2]. In this group, we !nd less usual robustness evaluation
techniques, such as the use of mathematical constructs to model particular system properties [61,
115], or the use of Bayesian Networks for estimating system robustness [193]. Fault injection,
however, still remains as a quite common technique for assessing robustness in this context. It has
been applied in the values of call parameters [49, 183, 219], in source code [71] as well as machine
code (i.e., compiled) [86], or even in the processor registers [2, 42, 43, 161].

The types of faults applied are relatively usual, encompassing invalid, random or boundary input
values [49, 63, 69, 115], bit-related faults (e.g., bit-"ip, bit-masking) [42] and also invalid return
values [69]. Some studies explore solutions that are conceptually di#erent from traditional bit or
parameter-based tampering, such as removing machine code instructions [2] or even injecting
machine code that emulates high-level programming mistakes [86].

2.6 Web Services
This subsection discusses robustness evaluation of web services and mostly covers: (i) web ap-
plications (i.e., client-server applications that communicate using HTTP, usually for transport-
ing HTML documents and related objects) [185]; (ii) SOAP web services, which have the goal
of allowing interoperable communication between heterogeneous systems [38]; and (iii) SOAP
web services compositions, which are built based on the aggregation of individual composing
units [93]. Table 6 summarizes the main characteristics of the research identi!ed that targets web
services.

The work by Siblini and Mansour [186] rely on the Web Services Description Language
(WSDL) documents associated with SOAP services and generate mutants, with the goal of gener-
ating clients that comply with each mutated speci!cation. However, the approach sends requests
to the genuine service implementation, with the goal of disclosing robustness problems. This con-
cept is represented in Figure 6 and described in further detail in the next paragraphs.

The approach depicted in Figure 6 relies on a set of three WSDL-oriented mutation operators,
which target three di#erent XML elements in the WSDL documents, namely the types, message, and
port type elements. The mutation operators are switch, which replaces elements in pairs, the special
operator that modi!es an element’s value to a boundary value, the next value in the domain or null,

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Distribution across time

44

A Systematic Review on Software Robustness Assessment 89:17

Fig. 8. Distribution of publications per system type over the years.

3 DISCUSSION
In this section, we discuss the main !ndings identi!ed during our analysis of the state of the art,
in perspective with the research questions presented earlier, in Section 1. We then highlight gaps
in the state of the art and identify open challenges for future research on robustness evaluation.

3.1 Research !estions Discussion
We begin by discussing research question RQ-1 Which types of software systems are the
subject of robustness evaluation?, for which we found relatively diverse target systems being
evaluated. However, we were able to !t the di"erent systems into seven groups that we consider to
be widely accepted classes of software. Figure 8 depicts the distribution and count of publications
per system type, over the whole period where research on software robustness was found.

As we can see in Figure 8, there has been a relatively large interest in the robustness evaluation
of operating systems, embedded systems, web services, and software components, although, by
nature, this latter type of software is a broad group. The evaluation of operating systems robustness
has received some exploratory attention in the early 1990s but has mostly developed in the late
1990s, due to the works on robustness conducted within the Ballista Project [104]. Afterwards, a
few works appeared, with authors bene!ting from the lessons learned by the work carried out
within the Ballista project and also proposing new approaches for operating system robustness
evaluation. Recently, the attention has shifted to mobile operating systems.

Communication systems have seen research being carried out in a few short bursts, spanning
about a decade and a half. Considering their long existence, they do not seem to be the typical case
of interest in robustness evaluation. Regarding embedded systems, the use of robustness evaluation
techniques has also been traditionally important (e.g., in aerospace systems). With the increasing
use and complexity of software in these systems (e.g., in modern vehicles) [28], it is not surprising
that the area is still active even considering the high speci!city of this type of systems. Research
on middleware has concentrated mostly around the late 2000’s, although we are considering also
middleware management systems, in which we also observe recent work being carried out, espe-
cially in cloud platforms. As mentioned, the Software components category is a typical target of
research, with particular expression in the popular years of COTS usage.

Web services robustness evaluation has seen a peak of research being carried out in the late
2000’s, with some work on Web Applications but with the majority focusing on SOAP web services.
Research interest has clearly stopped and, at the time of writing, we were also not able to identify
robustness evaluation research of more recent web service implementations, such as REST services.
Finally, and more recently, research has targeted Autonomous and adaptive systems, with most of
the works being published in the last decade. This is somewhat expectable, given the recent interest,
for instance, on autonomous and self-driving vehicles [23].

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for
Resilient Systems (SERENE 2022)

Web services

45

SOAP web
services

74%

Web
applications

17%

BPEL compositions
9%

• Strong empahsis on SOAP web services
• Targets of the techniques now also set on

the interface description
• Several cases also focused on delivering tools
• Fault injection with invalid inputs over

message fields
• 2015 as the last year of work on SOAP
• Research on REST is rising

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Web services - example

46

89:14 N. Laranjeiro et al.

Table 6. Techniques for Evaluating the Robustness of Web Services

Sy
ste

m
s

BPEL compositions Ilieva et al. [81], Kuk and Kim [105]
SOAP web services Carrozza et al. [34], Hanna and Munro [74], Laranjeiro et al. [108, 111], Looker et al. [119–121], Martin et al.

[128, 129], Rabhi [162], Rychlý and Žouželka [172], Salas et al. [174], Salva and Rabhi [176, 177], Siblini and Mansour
[186], Vieira et al. [197, 198]

Web applications Calori et al. [30], Fu et al. [67], Mendes et al. [133], Pattabiraman and Zorn [157]

Te
ch

ni
qu

es

Code changes injection Fu et al. [67], Mendes et al. [133]
Fault injection Carrozza et al. [34], Hanna and Munro [74], Ilieva et al. [81], Kuk and Kim [105], Laranjeiro et al. [108, 111], Looker

et al. [119–121], Martin et al. [128, 129], Mendes et al. [133], Pattabiraman and Zorn [157], Rychlý and Žouželka
[172], Salas et al. [174], Salva and Rabhi [176, 177], Vieira et al. [197, 198]

Interception Looker et al. [119–121], Rychlý and Žouželka [172], Salas et al. [174]
Model-based analysis Calori et al. [30]
Model-based testing Rabhi [162], Salva and Rabhi [177]
Mutation testing Siblini and Mansour [186]
Service emulation Kuk and Kim [105]

Ta
rg

et
s

Machine code Mendes et al. [133]
Message $elds Carrozza et al. [34], Hanna and Munro [74], Ilieva et al. [81], Kuk and Kim [105], Laranjeiro et al. [108, 111], Looker

et al. [119–121], Martin et al. [128, 129], Pattabiraman and Zorn [157], Rychlý and Žouželka [172], Salva and Rabhi
[176, 177], Vieira et al. [197, 198]

Messages Rychlý and Žouželka [172], Salas et al. [174], Salva and Rabhi [176]
Source code Fu et al. [67]
Speci$cation Calori et al. [30], Salva and Rabhi [177], Siblini and Mansour [186]
System model Rabhi [162]

Fa
ul

ts

Boundary inputs Carrozza et al. [34], Laranjeiro et al. [108, 111], Looker et al. [119–121], Siblini and Mansour [186], Vieira et al.
[197, 198]

Command injection Laranjeiro et al. [111], Rychlý and Žouželka [172], Salas et al. [174]
Invalid inputs Calori et al. [30], Carrozza et al. [34], Fu et al. [67], Hanna and Munro [74], Ilieva et al. [81], Kuk and Kim [105],

Laranjeiro et al. [108, 111], Looker et al. [119–121], Martin et al. [128, 129], Pattabiraman and Zorn [157], Rabhi
[162], Rychlý and Žouželka [172], Salva and Rabhi [176, 177], Siblini and Mansour [186], Vieira et al. [197, 198]

MACD Salva and Rabhi [176], Siblini and Mansour [186]
Programming errors Mendes et al. [133]
Random inputs Ilieva et al. [81], Looker et al. [119–121], Martin et al. [128, 129], Rabhi [162]
Timing faults Looker et al. [119], Rychlý and Žouželka [172]

Cl
as

si$
ca

tio
n 5 categories Carrozza et al. [34], Laranjeiro et al. [108, 111], Mendes et al. [133], Vieira et al. [197, 198]

3 categories,
5 subcategories

Ilieva et al. [81]

Binary Calori et al. [30], Fu et al. [67], Hanna and Munro [74], Kuk and Kim [105], Looker et al. [119–121], Martin et al.
[128, 129], Pattabiraman and Zorn [157], Rabhi [162], Rychlý and Žouželka [172], Salas et al. [174], Salva and Rabhi
[176, 177], Siblini and Mansour [186]

Fig. 6. Approach for robustness evaluation of SOAP web services based on mutated WSDL documents [186].

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Distribution across time

47

A Systematic Review on Software Robustness Assessment 89:17

Fig. 8. Distribution of publications per system type over the years.

3 DISCUSSION
In this section, we discuss the main !ndings identi!ed during our analysis of the state of the art,
in perspective with the research questions presented earlier, in Section 1. We then highlight gaps
in the state of the art and identify open challenges for future research on robustness evaluation.

3.1 Research !estions Discussion
We begin by discussing research question RQ-1 Which types of software systems are the
subject of robustness evaluation?, for which we found relatively diverse target systems being
evaluated. However, we were able to !t the di"erent systems into seven groups that we consider to
be widely accepted classes of software. Figure 8 depicts the distribution and count of publications
per system type, over the whole period where research on software robustness was found.

As we can see in Figure 8, there has been a relatively large interest in the robustness evaluation
of operating systems, embedded systems, web services, and software components, although, by
nature, this latter type of software is a broad group. The evaluation of operating systems robustness
has received some exploratory attention in the early 1990s but has mostly developed in the late
1990s, due to the works on robustness conducted within the Ballista Project [104]. Afterwards, a
few works appeared, with authors bene!ting from the lessons learned by the work carried out
within the Ballista project and also proposing new approaches for operating system robustness
evaluation. Recently, the attention has shifted to mobile operating systems.

Communication systems have seen research being carried out in a few short bursts, spanning
about a decade and a half. Considering their long existence, they do not seem to be the typical case
of interest in robustness evaluation. Regarding embedded systems, the use of robustness evaluation
techniques has also been traditionally important (e.g., in aerospace systems). With the increasing
use and complexity of software in these systems (e.g., in modern vehicles) [28], it is not surprising
that the area is still active even considering the high speci!city of this type of systems. Research
on middleware has concentrated mostly around the late 2000’s, although we are considering also
middleware management systems, in which we also observe recent work being carried out, espe-
cially in cloud platforms. As mentioned, the Software components category is a typical target of
research, with particular expression in the popular years of COTS usage.

Web services robustness evaluation has seen a peak of research being carried out in the late
2000’s, with some work on Web Applications but with the majority focusing on SOAP web services.
Research interest has clearly stopped and, at the time of writing, we were also not able to identify
robustness evaluation research of more recent web service implementations, such as REST services.
Finally, and more recently, research has targeted Autonomous and adaptive systems, with most of
the works being published in the last decade. This is somewhat expectable, given the recent interest,
for instance, on autonomous and self-driving vehicles [23].

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for
Resilient Systems (SERENE 2022)

Autonomous and adaptive systems

48

Autonomous
62%

Self-adaptive
38%

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Autonomous and adaptive - example

• Stateless / stateful
• Typical faults, but timing and

MACD also relevant
• Increasing presence of research in

autonomous systems

49

89:16 N. Laranjeiro et al.

Table 7. Techniques for Evaluating the Robustness of Autonomous and Adaptive Systems

Sy
ste

m
s Autonomous Arcile et al. [6], Chu et al. [39], Hutchison et al. [77], Jha et al. [83], Katz et al. [97, 98], Powell

et al. [160], Rubaiyat et al. [170]
Self-adaptive Bennani and Menascé [21], Cámara et al. [29, 50–52]

Te
ch

ni
qu

es

Fault injection Arcile et al. [6], Cámara et al. [29, 50–52], Chu et al. [39], Hutchison et al. [77], Jha et al. [83],
Katz et al. [97], Powell et al. [160], Rubaiyat et al. [170]

Interception Hutchison et al. [77], Katz et al. [97]
Model-based analysis Arcile et al. [6]
Mutation testing Katz et al. [98]
Stress testing Bennani and Menascé [21]

Te
ch

ni
qu

es

API calls Bennani and Menascé [21], Katz et al. [98]
Hardware components Jha et al. [83]
Message !elds Arcile et al. [6], Chu et al. [39], Cámara et al. [29, 50–52], Hutchison et al. [77], Jha et al. [83],

Katz et al. [97], Rubaiyat et al. [170]
Messages Chu et al. [39], Hutchison et al. [77], Katz et al. [97], Powell et al. [160]

Fa
ul

ts

Bit-level faults Jha et al. [83]
Boundary inputs Cámara et al. [29, 50–52], Katz et al. [98]
Environmental Jha et al. [83], Rubaiyat et al. [170]
Invalid inputs Arcile et al. [6], Chu et al. [39], Cámara et al. [29, 50–52], Hutchison et al. [77], Katz et al.

[97, 98]
MACD Chu et al. [39], Powell et al. [160]
ML model faults Jha et al. [83]
Random inputs Jha et al. [83], Rubaiyat et al. [170]
Stressload Bennani and Menascé [21]
Timing faults Chu et al. [39], Jha et al. [83]

Cl
as

si!
ca

tio
n

5 categories Cámara et al. [29, 50–52]
4 categories,
12 subcategories

Chu et al. [39]

4 categories Jha et al. [83]
3 categories Rubaiyat et al. [170]
Binary Arcile et al. [6], Bennani and Menascé [21], Hutchison et al. [77], Katz et al. [97, 98], Powell

et al. [160]

Fig. 7. Evaluating the robustness of a self-adaptive system controller (adapted from Reference [50]).

deleting messages [39, 160]. The increasing presence of this kind of systems (e.g., in autonomous
vehicles) is demanding for assessment approaches specialized in robustness, especially considering
the case of systems where the lack of robustness may a"ect important properties of the system
(e.g., safety).

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Which techniques are being
used to assess robustness?

50Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Techniques distribution

51

89:18 N. Laranjeiro et al.

Fig. 9. Distribution of publications per technique over the years.

Robustness evaluation techniques have been applied to highly diverse systems throughout the
years, with the heterogeneity and speci!cities of the target systems justifying the need for adap-
tations of existing techniques or the need for the de!nition of new techniques. At the same time,
the open space for research is visible, with many speci!c subtypes of systems not really being the
focus of robustness assessment approaches. This is the case of speci!c systems like iOS or even
recent Windows mobile operating systems (note that close work on security evaluation already
exists [5, 40, 75]), di"erent types of middleware like streaming middleware (e.g., Apache Kafka or
Amazon Kinesis), or REST services, which are now pervasive in the industry with major companies
providing access to their services via a REST API (e.g., Twitter, Instagram, Facebook) [149]. More
importantly, new types of systems like, for instance, Cyber-Physical Systems [113] or Blockchain
systems [123] are actually emerging cases where robustness evaluation approaches are scarce.

The second question, RQ-2 Which techniques are used to evaluate software robustness?
led us to focus on the techniques used in the robustness evaluation literature. Again, we found a
large diversity of speci!c techniques being used that, however, !t into a few general cases. Figure 9
shows the total number and applications of the di"erent techniques over time.

Figure 9 makes it clear that robustness evaluation research tends to be mostly of experimental
nature, with formal techniques being less frequently used. The distribution is dominated by es-
sentially two main groups of techniques, with most of the works using fault injection (i.e., about
three quarters of the works) and the other major group including model-based techniques (e.g.,
model-based testing) and accounting for about one fourth of the works. We must mention that we
found, during our literature review, fuzzing techniques being used to evaluate robustness-related
properties of systems. The reader may refer to a comprehensive survey on fuzzing techniques by
Manes et al. [127] for further details, or to the discussion on fuzzing challenges by Boehme et al.
[24]. Less frequently, some works use formal analysis techniques (e.g., invariant analysis and ab-
stract interpretation). The distribution of the most popular techniques is fairly regular, despite the
presence of a few moments, where we observe a higher number of papers being published (e.g.,
fault injection during the late 2000s).

Figure 10 shows the distribution of the di"erent techniques in perspective with the type of
system being evaluated.

Considering both the techniques and the system type, it is clear that fault injection dominates
the plot and touches all types of systems. We also observe that model-based testing tends to have
a stronger relative association with communication systems and also embedded systems. Also
worthwhile mentioning is the stronger association of code changes injection with software com-
ponents, and fuzzing with operating systems. Obviously, there are also cases of techniques not

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Techniques – Operating systems

52

A Systematic Review on Software Robustness Assessment 89:19

Fig. 10. Distribution of evaluation techniques per system type.

Fig. 11. Distribution of publications per technique target over the years.

being applied to certain system types (e.g., code changes injection in autonomous and adaptive
systems), which may be an indicator of a research opportunity.

Regarding the third question, RQ-3 Which are the targets used by software robustness
evaluation approaches?, we analyzed the prevalence of the targets of the techniques (e.g., mes-
sages, API calls, source code) used in the di!erent approaches and their distribution throughout
time. Figure 11 shows the outcome of this analysis.

As we can see in Figure 11, "ve di!erent targets (i.e., message "elds, system calls, messages, API
calls, and system model) account for the majority of the represented cases. Regarding system and
API calls, their use is frequent and we can see their application from early years until recently. The
same occurs for messages and message "elds, although there are few additional gaps in time. If we
consider the target code (i.e., both source code and machine code), then we end up with numbers
close to the most popular techniques, although less expressive. Some other targets are clearly less
frequent (e.g., application address spaces) and, in some of the cases, re#ect the specialization of a
technique that is applied to a very particular type of system (e.g., cloud network components).

Figure 12 shows the di!erent targets of evaluation, in perspective with the type of system being
evaluated.

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Techniques – Communication systems

53

A Systematic Review on Software Robustness Assessment 89:19

Fig. 10. Distribution of evaluation techniques per system type.

Fig. 11. Distribution of publications per technique target over the years.

being applied to certain system types (e.g., code changes injection in autonomous and adaptive
systems), which may be an indicator of a research opportunity.

Regarding the third question, RQ-3 Which are the targets used by software robustness
evaluation approaches?, we analyzed the prevalence of the targets of the techniques (e.g., mes-
sages, API calls, source code) used in the di!erent approaches and their distribution throughout
time. Figure 11 shows the outcome of this analysis.

As we can see in Figure 11, "ve di!erent targets (i.e., message "elds, system calls, messages, API
calls, and system model) account for the majority of the represented cases. Regarding system and
API calls, their use is frequent and we can see their application from early years until recently. The
same occurs for messages and message "elds, although there are few additional gaps in time. If we
consider the target code (i.e., both source code and machine code), then we end up with numbers
close to the most popular techniques, although less expressive. Some other targets are clearly less
frequent (e.g., application address spaces) and, in some of the cases, re#ect the specialization of a
technique that is applied to a very particular type of system (e.g., cloud network components).

Figure 12 shows the di!erent targets of evaluation, in perspective with the type of system being
evaluated.

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Techniques – Embedded systems

54

A Systematic Review on Software Robustness Assessment 89:19

Fig. 10. Distribution of evaluation techniques per system type.

Fig. 11. Distribution of publications per technique target over the years.

being applied to certain system types (e.g., code changes injection in autonomous and adaptive
systems), which may be an indicator of a research opportunity.

Regarding the third question, RQ-3 Which are the targets used by software robustness
evaluation approaches?, we analyzed the prevalence of the targets of the techniques (e.g., mes-
sages, API calls, source code) used in the di!erent approaches and their distribution throughout
time. Figure 11 shows the outcome of this analysis.

As we can see in Figure 11, "ve di!erent targets (i.e., message "elds, system calls, messages, API
calls, and system model) account for the majority of the represented cases. Regarding system and
API calls, their use is frequent and we can see their application from early years until recently. The
same occurs for messages and message "elds, although there are few additional gaps in time. If we
consider the target code (i.e., both source code and machine code), then we end up with numbers
close to the most popular techniques, although less expressive. Some other targets are clearly less
frequent (e.g., application address spaces) and, in some of the cases, re#ect the specialization of a
technique that is applied to a very particular type of system (e.g., cloud network components).

Figure 12 shows the di!erent targets of evaluation, in perspective with the type of system being
evaluated.

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Techniques – Middleware

55

A Systematic Review on Software Robustness Assessment 89:19

Fig. 10. Distribution of evaluation techniques per system type.

Fig. 11. Distribution of publications per technique target over the years.

being applied to certain system types (e.g., code changes injection in autonomous and adaptive
systems), which may be an indicator of a research opportunity.

Regarding the third question, RQ-3 Which are the targets used by software robustness
evaluation approaches?, we analyzed the prevalence of the targets of the techniques (e.g., mes-
sages, API calls, source code) used in the di!erent approaches and their distribution throughout
time. Figure 11 shows the outcome of this analysis.

As we can see in Figure 11, "ve di!erent targets (i.e., message "elds, system calls, messages, API
calls, and system model) account for the majority of the represented cases. Regarding system and
API calls, their use is frequent and we can see their application from early years until recently. The
same occurs for messages and message "elds, although there are few additional gaps in time. If we
consider the target code (i.e., both source code and machine code), then we end up with numbers
close to the most popular techniques, although less expressive. Some other targets are clearly less
frequent (e.g., application address spaces) and, in some of the cases, re#ect the specialization of a
technique that is applied to a very particular type of system (e.g., cloud network components).

Figure 12 shows the di!erent targets of evaluation, in perspective with the type of system being
evaluated.

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Techniques – Software components

56

A Systematic Review on Software Robustness Assessment 89:19

Fig. 10. Distribution of evaluation techniques per system type.

Fig. 11. Distribution of publications per technique target over the years.

being applied to certain system types (e.g., code changes injection in autonomous and adaptive
systems), which may be an indicator of a research opportunity.

Regarding the third question, RQ-3 Which are the targets used by software robustness
evaluation approaches?, we analyzed the prevalence of the targets of the techniques (e.g., mes-
sages, API calls, source code) used in the di!erent approaches and their distribution throughout
time. Figure 11 shows the outcome of this analysis.

As we can see in Figure 11, "ve di!erent targets (i.e., message "elds, system calls, messages, API
calls, and system model) account for the majority of the represented cases. Regarding system and
API calls, their use is frequent and we can see their application from early years until recently. The
same occurs for messages and message "elds, although there are few additional gaps in time. If we
consider the target code (i.e., both source code and machine code), then we end up with numbers
close to the most popular techniques, although less expressive. Some other targets are clearly less
frequent (e.g., application address spaces) and, in some of the cases, re#ect the specialization of a
technique that is applied to a very particular type of system (e.g., cloud network components).

Figure 12 shows the di!erent targets of evaluation, in perspective with the type of system being
evaluated.

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Techniques – Web services

57

A Systematic Review on Software Robustness Assessment 89:19

Fig. 10. Distribution of evaluation techniques per system type.

Fig. 11. Distribution of publications per technique target over the years.

being applied to certain system types (e.g., code changes injection in autonomous and adaptive
systems), which may be an indicator of a research opportunity.

Regarding the third question, RQ-3 Which are the targets used by software robustness
evaluation approaches?, we analyzed the prevalence of the targets of the techniques (e.g., mes-
sages, API calls, source code) used in the di!erent approaches and their distribution throughout
time. Figure 11 shows the outcome of this analysis.

As we can see in Figure 11, "ve di!erent targets (i.e., message "elds, system calls, messages, API
calls, and system model) account for the majority of the represented cases. Regarding system and
API calls, their use is frequent and we can see their application from early years until recently. The
same occurs for messages and message "elds, although there are few additional gaps in time. If we
consider the target code (i.e., both source code and machine code), then we end up with numbers
close to the most popular techniques, although less expressive. Some other targets are clearly less
frequent (e.g., application address spaces) and, in some of the cases, re#ect the specialization of a
technique that is applied to a very particular type of system (e.g., cloud network components).

Figure 12 shows the di!erent targets of evaluation, in perspective with the type of system being
evaluated.

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Techniques – Autonomous and adaptive

58

A Systematic Review on Software Robustness Assessment 89:19

Fig. 10. Distribution of evaluation techniques per system type.

Fig. 11. Distribution of publications per technique target over the years.

being applied to certain system types (e.g., code changes injection in autonomous and adaptive
systems), which may be an indicator of a research opportunity.

Regarding the third question, RQ-3 Which are the targets used by software robustness
evaluation approaches?, we analyzed the prevalence of the targets of the techniques (e.g., mes-
sages, API calls, source code) used in the di!erent approaches and their distribution throughout
time. Figure 11 shows the outcome of this analysis.

As we can see in Figure 11, "ve di!erent targets (i.e., message "elds, system calls, messages, API
calls, and system model) account for the majority of the represented cases. Regarding system and
API calls, their use is frequent and we can see their application from early years until recently. The
same occurs for messages and message "elds, although there are few additional gaps in time. If we
consider the target code (i.e., both source code and machine code), then we end up with numbers
close to the most popular techniques, although less expressive. Some other targets are clearly less
frequent (e.g., application address spaces) and, in some of the cases, re#ect the specialization of a
technique that is applied to a very particular type of system (e.g., cloud network components).

Figure 12 shows the di!erent targets of evaluation, in perspective with the type of system being
evaluated.

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

About the techniques…

• Mostly experimental (3/4 uses fault injection)

• There is some coupling of techniques to certain types of systems:
• Formal techniques à embedded and communication systems
• Code changes injection à Software components
• Fuzzing à operating systems

• Certain combinations were not observed
• e.g., code changes injection and autonomous and adaptive systems

59Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Which are the targets of
robustness evaluation
techniques?

60Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Technique target - distribution

61

A Systematic Review on Software Robustness Assessment 89:19

Fig. 10. Distribution of evaluation techniques per system type.

Fig. 11. Distribution of publications per technique target over the years.

being applied to certain system types (e.g., code changes injection in autonomous and adaptive
systems), which may be an indicator of a research opportunity.

Regarding the third question, RQ-3 Which are the targets used by software robustness
evaluation approaches?, we analyzed the prevalence of the targets of the techniques (e.g., mes-
sages, API calls, source code) used in the di!erent approaches and their distribution throughout
time. Figure 11 shows the outcome of this analysis.

As we can see in Figure 11, "ve di!erent targets (i.e., message "elds, system calls, messages, API
calls, and system model) account for the majority of the represented cases. Regarding system and
API calls, their use is frequent and we can see their application from early years until recently. The
same occurs for messages and message "elds, although there are few additional gaps in time. If we
consider the target code (i.e., both source code and machine code), then we end up with numbers
close to the most popular techniques, although less expressive. Some other targets are clearly less
frequent (e.g., application address spaces) and, in some of the cases, re#ect the specialization of a
technique that is applied to a very particular type of system (e.g., cloud network components).

Figure 12 shows the di!erent targets of evaluation, in perspective with the type of system being
evaluated.

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for
Resilient Systems (SERENE 2022)

62

89:20 N. Laranjeiro et al.

Fig. 12. Distribution of evaluation targets per system type.

There are a few obvious cases of association that are visible in Figure 12, such as system calls or
kernel address space being coupled with operating systems or embedded systems. Message !elds
appear strongly associated with web services, due to the large number of works based on fault
injection applied to the !elds of SOAP messages. The association of message !elds with commu-
nication systems and autonomous and adaptive systems is also quite clear. In the former case, it
is an obvious way for evaluating robustness of network-based systems. In the latter case, message
!elds carrying faulty inputs have been mostly directed to a part of the system, as a way of evaluat-
ing robustness of the whole system. The messages target is largely associated with communication
systems and also web services, which is an expected exploration of the decoupling between clients
and servers in this type of systems. A large portion of the target system model is associated with
communication systems and embedded systems, which is related with the fact that the need of
modelling in these systems is frequent to prove certain highly critical properties of the system. Fi-
nally, we must mention the case of API calls tend to be used along with middleware and software
components, which is not surprising if we consider that these types of software o"er APIs as a
main entry point.

The fourth research question, RQ-4 Which types of faults are being used in software ro-
bustness evaluation?, aims at characterizing the types of faults used in robustness assessment
research. Figure 13 shows the prevalence and distribution of the types of faults identi!ed in the
literature throughout the time.

As we can see in Figure 13, invalid inputs dominate the distribution, being used in more than
half of the works. At a smaller scale, but still popular, we !nd random and boundary inputs, bit-
level faults, timing faults, MACD operations, and invalid outputs. Regarding the distribution over
the years, we can observe a higher number of works using invalid inputs in the late 2000s, with the
same happening with works using MACD and invalid outputs operations. Boundary and random
inputs have been used regularly throughout the time and also bit-level faults, although at a smaller

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Technique target
Operating systems

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

63

89:20 N. Laranjeiro et al.

Fig. 12. Distribution of evaluation targets per system type.

There are a few obvious cases of association that are visible in Figure 12, such as system calls or
kernel address space being coupled with operating systems or embedded systems. Message !elds
appear strongly associated with web services, due to the large number of works based on fault
injection applied to the !elds of SOAP messages. The association of message !elds with commu-
nication systems and autonomous and adaptive systems is also quite clear. In the former case, it
is an obvious way for evaluating robustness of network-based systems. In the latter case, message
!elds carrying faulty inputs have been mostly directed to a part of the system, as a way of evaluat-
ing robustness of the whole system. The messages target is largely associated with communication
systems and also web services, which is an expected exploration of the decoupling between clients
and servers in this type of systems. A large portion of the target system model is associated with
communication systems and embedded systems, which is related with the fact that the need of
modelling in these systems is frequent to prove certain highly critical properties of the system. Fi-
nally, we must mention the case of API calls tend to be used along with middleware and software
components, which is not surprising if we consider that these types of software o"er APIs as a
main entry point.

The fourth research question, RQ-4 Which types of faults are being used in software ro-
bustness evaluation?, aims at characterizing the types of faults used in robustness assessment
research. Figure 13 shows the prevalence and distribution of the types of faults identi!ed in the
literature throughout the time.

As we can see in Figure 13, invalid inputs dominate the distribution, being used in more than
half of the works. At a smaller scale, but still popular, we !nd random and boundary inputs, bit-
level faults, timing faults, MACD operations, and invalid outputs. Regarding the distribution over
the years, we can observe a higher number of works using invalid inputs in the late 2000s, with the
same happening with works using MACD and invalid outputs operations. Boundary and random
inputs have been used regularly throughout the time and also bit-level faults, although at a smaller

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Technique target
Communication
systems

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

64

89:20 N. Laranjeiro et al.

Fig. 12. Distribution of evaluation targets per system type.

There are a few obvious cases of association that are visible in Figure 12, such as system calls or
kernel address space being coupled with operating systems or embedded systems. Message !elds
appear strongly associated with web services, due to the large number of works based on fault
injection applied to the !elds of SOAP messages. The association of message !elds with commu-
nication systems and autonomous and adaptive systems is also quite clear. In the former case, it
is an obvious way for evaluating robustness of network-based systems. In the latter case, message
!elds carrying faulty inputs have been mostly directed to a part of the system, as a way of evaluat-
ing robustness of the whole system. The messages target is largely associated with communication
systems and also web services, which is an expected exploration of the decoupling between clients
and servers in this type of systems. A large portion of the target system model is associated with
communication systems and embedded systems, which is related with the fact that the need of
modelling in these systems is frequent to prove certain highly critical properties of the system. Fi-
nally, we must mention the case of API calls tend to be used along with middleware and software
components, which is not surprising if we consider that these types of software o"er APIs as a
main entry point.

The fourth research question, RQ-4 Which types of faults are being used in software ro-
bustness evaluation?, aims at characterizing the types of faults used in robustness assessment
research. Figure 13 shows the prevalence and distribution of the types of faults identi!ed in the
literature throughout the time.

As we can see in Figure 13, invalid inputs dominate the distribution, being used in more than
half of the works. At a smaller scale, but still popular, we !nd random and boundary inputs, bit-
level faults, timing faults, MACD operations, and invalid outputs. Regarding the distribution over
the years, we can observe a higher number of works using invalid inputs in the late 2000s, with the
same happening with works using MACD and invalid outputs operations. Boundary and random
inputs have been used regularly throughout the time and also bit-level faults, although at a smaller

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Technique target
Embedded systems

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

65

89:20 N. Laranjeiro et al.

Fig. 12. Distribution of evaluation targets per system type.

There are a few obvious cases of association that are visible in Figure 12, such as system calls or
kernel address space being coupled with operating systems or embedded systems. Message !elds
appear strongly associated with web services, due to the large number of works based on fault
injection applied to the !elds of SOAP messages. The association of message !elds with commu-
nication systems and autonomous and adaptive systems is also quite clear. In the former case, it
is an obvious way for evaluating robustness of network-based systems. In the latter case, message
!elds carrying faulty inputs have been mostly directed to a part of the system, as a way of evaluat-
ing robustness of the whole system. The messages target is largely associated with communication
systems and also web services, which is an expected exploration of the decoupling between clients
and servers in this type of systems. A large portion of the target system model is associated with
communication systems and embedded systems, which is related with the fact that the need of
modelling in these systems is frequent to prove certain highly critical properties of the system. Fi-
nally, we must mention the case of API calls tend to be used along with middleware and software
components, which is not surprising if we consider that these types of software o"er APIs as a
main entry point.

The fourth research question, RQ-4 Which types of faults are being used in software ro-
bustness evaluation?, aims at characterizing the types of faults used in robustness assessment
research. Figure 13 shows the prevalence and distribution of the types of faults identi!ed in the
literature throughout the time.

As we can see in Figure 13, invalid inputs dominate the distribution, being used in more than
half of the works. At a smaller scale, but still popular, we !nd random and boundary inputs, bit-
level faults, timing faults, MACD operations, and invalid outputs. Regarding the distribution over
the years, we can observe a higher number of works using invalid inputs in the late 2000s, with the
same happening with works using MACD and invalid outputs operations. Boundary and random
inputs have been used regularly throughout the time and also bit-level faults, although at a smaller

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Technique target
Middleware

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

66

89:20 N. Laranjeiro et al.

Fig. 12. Distribution of evaluation targets per system type.

There are a few obvious cases of association that are visible in Figure 12, such as system calls or
kernel address space being coupled with operating systems or embedded systems. Message !elds
appear strongly associated with web services, due to the large number of works based on fault
injection applied to the !elds of SOAP messages. The association of message !elds with commu-
nication systems and autonomous and adaptive systems is also quite clear. In the former case, it
is an obvious way for evaluating robustness of network-based systems. In the latter case, message
!elds carrying faulty inputs have been mostly directed to a part of the system, as a way of evaluat-
ing robustness of the whole system. The messages target is largely associated with communication
systems and also web services, which is an expected exploration of the decoupling between clients
and servers in this type of systems. A large portion of the target system model is associated with
communication systems and embedded systems, which is related with the fact that the need of
modelling in these systems is frequent to prove certain highly critical properties of the system. Fi-
nally, we must mention the case of API calls tend to be used along with middleware and software
components, which is not surprising if we consider that these types of software o"er APIs as a
main entry point.

The fourth research question, RQ-4 Which types of faults are being used in software ro-
bustness evaluation?, aims at characterizing the types of faults used in robustness assessment
research. Figure 13 shows the prevalence and distribution of the types of faults identi!ed in the
literature throughout the time.

As we can see in Figure 13, invalid inputs dominate the distribution, being used in more than
half of the works. At a smaller scale, but still popular, we !nd random and boundary inputs, bit-
level faults, timing faults, MACD operations, and invalid outputs. Regarding the distribution over
the years, we can observe a higher number of works using invalid inputs in the late 2000s, with the
same happening with works using MACD and invalid outputs operations. Boundary and random
inputs have been used regularly throughout the time and also bit-level faults, although at a smaller

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Technique target
Software components

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

67

89:20 N. Laranjeiro et al.

Fig. 12. Distribution of evaluation targets per system type.

There are a few obvious cases of association that are visible in Figure 12, such as system calls or
kernel address space being coupled with operating systems or embedded systems. Message !elds
appear strongly associated with web services, due to the large number of works based on fault
injection applied to the !elds of SOAP messages. The association of message !elds with commu-
nication systems and autonomous and adaptive systems is also quite clear. In the former case, it
is an obvious way for evaluating robustness of network-based systems. In the latter case, message
!elds carrying faulty inputs have been mostly directed to a part of the system, as a way of evaluat-
ing robustness of the whole system. The messages target is largely associated with communication
systems and also web services, which is an expected exploration of the decoupling between clients
and servers in this type of systems. A large portion of the target system model is associated with
communication systems and embedded systems, which is related with the fact that the need of
modelling in these systems is frequent to prove certain highly critical properties of the system. Fi-
nally, we must mention the case of API calls tend to be used along with middleware and software
components, which is not surprising if we consider that these types of software o"er APIs as a
main entry point.

The fourth research question, RQ-4 Which types of faults are being used in software ro-
bustness evaluation?, aims at characterizing the types of faults used in robustness assessment
research. Figure 13 shows the prevalence and distribution of the types of faults identi!ed in the
literature throughout the time.

As we can see in Figure 13, invalid inputs dominate the distribution, being used in more than
half of the works. At a smaller scale, but still popular, we !nd random and boundary inputs, bit-
level faults, timing faults, MACD operations, and invalid outputs. Regarding the distribution over
the years, we can observe a higher number of works using invalid inputs in the late 2000s, with the
same happening with works using MACD and invalid outputs operations. Boundary and random
inputs have been used regularly throughout the time and also bit-level faults, although at a smaller

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Technique target
Web services

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

68

89:20 N. Laranjeiro et al.

Fig. 12. Distribution of evaluation targets per system type.

There are a few obvious cases of association that are visible in Figure 12, such as system calls or
kernel address space being coupled with operating systems or embedded systems. Message !elds
appear strongly associated with web services, due to the large number of works based on fault
injection applied to the !elds of SOAP messages. The association of message !elds with commu-
nication systems and autonomous and adaptive systems is also quite clear. In the former case, it
is an obvious way for evaluating robustness of network-based systems. In the latter case, message
!elds carrying faulty inputs have been mostly directed to a part of the system, as a way of evaluat-
ing robustness of the whole system. The messages target is largely associated with communication
systems and also web services, which is an expected exploration of the decoupling between clients
and servers in this type of systems. A large portion of the target system model is associated with
communication systems and embedded systems, which is related with the fact that the need of
modelling in these systems is frequent to prove certain highly critical properties of the system. Fi-
nally, we must mention the case of API calls tend to be used along with middleware and software
components, which is not surprising if we consider that these types of software o"er APIs as a
main entry point.

The fourth research question, RQ-4 Which types of faults are being used in software ro-
bustness evaluation?, aims at characterizing the types of faults used in robustness assessment
research. Figure 13 shows the prevalence and distribution of the types of faults identi!ed in the
literature throughout the time.

As we can see in Figure 13, invalid inputs dominate the distribution, being used in more than
half of the works. At a smaller scale, but still popular, we !nd random and boundary inputs, bit-
level faults, timing faults, MACD operations, and invalid outputs. Regarding the distribution over
the years, we can observe a higher number of works using invalid inputs in the late 2000s, with the
same happening with works using MACD and invalid outputs operations. Boundary and random
inputs have been used regularly throughout the time and also bit-level faults, although at a smaller

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Technique target
Autonomous and
adaptive systems

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

About the targets…

• 5 targets dominate the distribution
• Message fields
• System calls
• Messages
• API calls
• System model

• System calls and API calls of frequent usage and distributed along
time
• Message and message fields also distributed, but with a more gaps

69Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

About the targets (coupling)

• System calls and kernel address space à operating systems and
embedded systems
• Messages and fields à WS, communication systems, and AA
• Exploration of the client-server decoupling

• System model à communication systems and embedded systems
• Modelling necessary to prove critical properties of the system

• API calls à middleware and Software components
• Main entry points of this type of software

70Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Which types of faults are
being used in software
robustness evaluation?

71Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Types of Faults - distribution

72

A Systematic Review on Software Robustness Assessment 89:21

Fig. 13. Distribution of publications per fault type over the years.

Fig. 14. Distribution of fault types per system type.

scale. Timing faults also show a regular presence, despite their !rst appearance in this context
being only in the mid-2000s.

Figure 14 shows the distribution of types of faults in perspective with the system types in which
they are used.

As we can see in Figure 14, two of the most frequent fault types (i.e., invalid inputs and boundary
inputs) have been used in works that span across all identi!ed system types (albeit with di"erent
prevalence), which is an indicator of their usefulness and applicability in robustness evaluation.
A similar case happens with random inputs, which however are not found associated with mid-
dleware. It is also worthwhile mentioning that about half of the works using random inputs are
evaluating operating systems, and timing faults are also prevalent when the work evaluates em-
bedded systems, which is expected given that many of these systems have to ful!ll strong timing

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Types of faults

• Invalid inputs dominate the distribution
• Also popular: random and boundary inputs, bit-level faults, timing

faults, MACD operations, invalid outputs
• Distribution over time
• invalid inputs, MACD and invalid outputs concentrating in the late 2000’s
• boundary, random used regularly, bit-level also
• Timing faults used regularly since the 2000’s

73Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Types of faults
Operating
systems

74

A Systematic Review on Software Robustness Assessment 89:21

Fig. 13. Distribution of publications per fault type over the years.

Fig. 14. Distribution of fault types per system type.

scale. Timing faults also show a regular presence, despite their !rst appearance in this context
being only in the mid-2000s.

Figure 14 shows the distribution of types of faults in perspective with the system types in which
they are used.

As we can see in Figure 14, two of the most frequent fault types (i.e., invalid inputs and boundary
inputs) have been used in works that span across all identi!ed system types (albeit with di"erent
prevalence), which is an indicator of their usefulness and applicability in robustness evaluation.
A similar case happens with random inputs, which however are not found associated with mid-
dleware. It is also worthwhile mentioning that about half of the works using random inputs are
evaluating operating systems, and timing faults are also prevalent when the work evaluates em-
bedded systems, which is expected given that many of these systems have to ful!ll strong timing

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Types of faults
Communication
systems

A Systematic Review on Software Robustness Assessment 89:21

Fig. 13. Distribution of publications per fault type over the years.

Fig. 14. Distribution of fault types per system type.

scale. Timing faults also show a regular presence, despite their !rst appearance in this context
being only in the mid-2000s.

Figure 14 shows the distribution of types of faults in perspective with the system types in which
they are used.

As we can see in Figure 14, two of the most frequent fault types (i.e., invalid inputs and boundary
inputs) have been used in works that span across all identi!ed system types (albeit with di"erent
prevalence), which is an indicator of their usefulness and applicability in robustness evaluation.
A similar case happens with random inputs, which however are not found associated with mid-
dleware. It is also worthwhile mentioning that about half of the works using random inputs are
evaluating operating systems, and timing faults are also prevalent when the work evaluates em-
bedded systems, which is expected given that many of these systems have to ful!ll strong timing

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

75Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Types of faults
Embedded
systems

A Systematic Review on Software Robustness Assessment 89:21

Fig. 13. Distribution of publications per fault type over the years.

Fig. 14. Distribution of fault types per system type.

scale. Timing faults also show a regular presence, despite their !rst appearance in this context
being only in the mid-2000s.

Figure 14 shows the distribution of types of faults in perspective with the system types in which
they are used.

As we can see in Figure 14, two of the most frequent fault types (i.e., invalid inputs and boundary
inputs) have been used in works that span across all identi!ed system types (albeit with di"erent
prevalence), which is an indicator of their usefulness and applicability in robustness evaluation.
A similar case happens with random inputs, which however are not found associated with mid-
dleware. It is also worthwhile mentioning that about half of the works using random inputs are
evaluating operating systems, and timing faults are also prevalent when the work evaluates em-
bedded systems, which is expected given that many of these systems have to ful!ll strong timing

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

76Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

A Systematic Review on Software Robustness Assessment 89:21

Fig. 13. Distribution of publications per fault type over the years.

Fig. 14. Distribution of fault types per system type.

scale. Timing faults also show a regular presence, despite their !rst appearance in this context
being only in the mid-2000s.

Figure 14 shows the distribution of types of faults in perspective with the system types in which
they are used.

As we can see in Figure 14, two of the most frequent fault types (i.e., invalid inputs and boundary
inputs) have been used in works that span across all identi!ed system types (albeit with di"erent
prevalence), which is an indicator of their usefulness and applicability in robustness evaluation.
A similar case happens with random inputs, which however are not found associated with mid-
dleware. It is also worthwhile mentioning that about half of the works using random inputs are
evaluating operating systems, and timing faults are also prevalent when the work evaluates em-
bedded systems, which is expected given that many of these systems have to ful!ll strong timing

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Types of faults
Middleware

77Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

A Systematic Review on Software Robustness Assessment 89:21

Fig. 13. Distribution of publications per fault type over the years.

Fig. 14. Distribution of fault types per system type.

scale. Timing faults also show a regular presence, despite their !rst appearance in this context
being only in the mid-2000s.

Figure 14 shows the distribution of types of faults in perspective with the system types in which
they are used.

As we can see in Figure 14, two of the most frequent fault types (i.e., invalid inputs and boundary
inputs) have been used in works that span across all identi!ed system types (albeit with di"erent
prevalence), which is an indicator of their usefulness and applicability in robustness evaluation.
A similar case happens with random inputs, which however are not found associated with mid-
dleware. It is also worthwhile mentioning that about half of the works using random inputs are
evaluating operating systems, and timing faults are also prevalent when the work evaluates em-
bedded systems, which is expected given that many of these systems have to ful!ll strong timing

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Types of faults
Software
components

78Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Types of faults
Web services

A Systematic Review on Software Robustness Assessment 89:21

Fig. 13. Distribution of publications per fault type over the years.

Fig. 14. Distribution of fault types per system type.

scale. Timing faults also show a regular presence, despite their !rst appearance in this context
being only in the mid-2000s.

Figure 14 shows the distribution of types of faults in perspective with the system types in which
they are used.

As we can see in Figure 14, two of the most frequent fault types (i.e., invalid inputs and boundary
inputs) have been used in works that span across all identi!ed system types (albeit with di"erent
prevalence), which is an indicator of their usefulness and applicability in robustness evaluation.
A similar case happens with random inputs, which however are not found associated with mid-
dleware. It is also worthwhile mentioning that about half of the works using random inputs are
evaluating operating systems, and timing faults are also prevalent when the work evaluates em-
bedded systems, which is expected given that many of these systems have to ful!ll strong timing

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

79Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

A Systematic Review on Software Robustness Assessment 89:21

Fig. 13. Distribution of publications per fault type over the years.

Fig. 14. Distribution of fault types per system type.

scale. Timing faults also show a regular presence, despite their !rst appearance in this context
being only in the mid-2000s.

Figure 14 shows the distribution of types of faults in perspective with the system types in which
they are used.

As we can see in Figure 14, two of the most frequent fault types (i.e., invalid inputs and boundary
inputs) have been used in works that span across all identi!ed system types (albeit with di"erent
prevalence), which is an indicator of their usefulness and applicability in robustness evaluation.
A similar case happens with random inputs, which however are not found associated with mid-
dleware. It is also worthwhile mentioning that about half of the works using random inputs are
evaluating operating systems, and timing faults are also prevalent when the work evaluates em-
bedded systems, which is expected given that many of these systems have to ful!ll strong timing

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Types of faults
Autonomous
and Adaptive
systems

80Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

About the fault types…

• Invalid inputs and boundary inputs span all system types
• Usefulness and applicability

• Random inputs touch nearly all system types
• Half of the works using random inputs target operating systems
• Timing faults are prevalent in embedded systems
• MACD are frequent in communication systems
• Bit-level faults are mostly associated with operating systems and

embedded systems
• Software components are the category in which the most diverse

types of faults have been used
81Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Which are the methods
used to characterize
robustness?

82Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Classifying robustness

• 13 structures
• 33 different classification schemes
• From binary to 4 categories + 12 subcategories

83

A Systematic Review on Software Robustness Assessment 89:23

Table 8. Classification Schemes Used in the State of the Art

Structure Classi!cation terms Works
4 categories,
12 subcategories

Interface No error message returned, Correct error message, Incorrect error message
System Nothing observed, Module crash, BIP engine crash, OS crash
Application (safety) Safety respected, A safety condition is violated
Application (missions) Mission ful!lled, Mission failure

Chu et al. [39]

9 categories Ok, Exit, Crash, Warn, Retry, Abort, Dropped request, Data loss, Process restart Broadwell et al. [27]
Correct, Incorrect, Crashing, Invariant preserving, Invariant breaking, Invalid input resistant, Invalid input
crashing, Broken invariant resistant, Broken invariant crashing

Lei et al. [115, 116]

8 categories E"ectless, Incorrect output results, Real-time dysfunction, System crash, Memory access dysfunction, Excep-
tion trigger, Application hang

Nicolescu et al. [151]

3 categories,
7 subcategories

Application level Application failure, Application hang
Interface level Error status, Exception, Wrapper
Kernel level Kernel hang, Kernel debugger

Arlat et al. [9]

7 categories Pass, Pass with exception, RTI internal error, Unknown exception, Abort, Restart, Catastrophic Fernsler and Koopman [62]
Deadline missed, Incorrect results, Application hang, System hang, Alarm, Error status, Exception Rodríguez et al. [166]

6 categories Catastrophic failure, Restart failure, Abort failure, Raise unknown exception, Silent failure, Hindering failure Pan et al. [156]
System call returns correct status code (0), System call exits with unexpected error code (1), System call
succeeds with invalid parameters (2), RTOS terminates benchmark (3), Test causes application restart and
RTOS reload (4), Test causes cold system restart (5)

Dingman et al. [55]

3 categories,
5 subcategories

Physical Server is down, Network connection to the server is broken
Interaction Timeout exception, Response error
Development Named parameter incompatibility

Ilieva et al. [81]

5 categories No signaling, Application hang, Kernel hang, Exception, Error code Jarboui et al. [82]
Error code returned (SEr), Exception raised (SXp), Panic state (SPc), Hard reboot required (SHh), No-signaling
state (SNS)

Kanoun et al. [96]

Web server crash, Web server unresponsive, Resource use penalty, Wrong results, No impact Mendes et al. [133]
OS Crash, Application hang, Abnormal application termination, No impact, Wrong results Madeira et al. [124]

4 categories Kernel failure, Workload failure, File system corruption, No impact Cotroneo et al. [48]
Crash, Fatal error, Application not responding, No failure Cotroneo et al. [47]
No problems detected (FM1), System or applications hang (FM2), System crashes and reboots (FM3), Same as
FM3 but there are corrupted !les (FM4)

Mendonça and Neves [134]

Reboot, Crash, Application not responding, No e"ect Yi et al. [217]
Detected failure, Silent failure, Hang failure, Crash failure Zhou et al. [221]
Operating System exception, Timeout, Correct result, Silent data corruption Ahmad et al. [2]
No failure, Class1 (no speci!cation violation), Class 2 (speci!cation violation), Class 3 (crash or hang) Johansson et al., [88–90]
Correct, Timeout, Error, Erratic Moraes et al., [144]
Mission success rate, Tra#c violations per km, Accidents per km, Time to tra#c violation Jha et al. [83]
Correct output, Wrong result, System hang, Exception Ruiz et al., [171]
No failure, Application error, Application hang, System crash Winter et al., [205, 206]

3 categories Restart, Abort, Pass Xiang et al. [211]
Correct, Abort, Hang Costa and Madeira [42]
Abnormal, Hang, Normal Costa et al. [43]
Crash, Hang, Violation of safety invariant Hutchison et al. [77]
Violation of safety distance, unneeded deceleration, lane crossing Rubaiyat et al. [170]

2 categories Critical, Not critical Calori et al. [30]
5 categories Catastrophic,

Restart, Abort,
Silent, Hindering

Azevedo et al. [14], Cardoso and Martins [32], Carrozza et al. [34], Cotroneo et al. [44], Cámara et al. [29, 50–52], Koop-
man and DeVale [101, 102], Koopman et al. [103], Kropp et al. [104], Laranjeiro et al. [108, 110, 111], Maia et al. [125],
Napolitano et al. [147], Shahpasand et al. [181], Shahrokni and Feldt [183], Vieira et al. [197, 198]

Binary Robustness issue,
No issue

Arcile et al. [6], Acharya et al., [1], Ait-Ameur et al. [15], Albinet et al. [3], Alnawasreh et al. [4], Batista et al. [18],
Bauersfeld and Vos [19], Belli et al. [20], Bennani and Menascé [21], Cardoso et al. [31], Cavalli et al. [35], Chauvel et al.
[36], Cong et al. [41], Cotroneo et al. [45, 46], Csallner and Smaragdakis [49], Durães and Madeira [56], Feng and Shin
[60], Fernandez et al. [61], Fetzer and Xiao [63], Forrester and Miller [64], Fouchal et al. [65, 66], Fu and Koné [68], Fu
et al. [67], Ghosh and Schmid [69], Ghosh et al. [70], Giu"rida et al. [71], Hanna and Munro [74], Heckeler et al. [76],
Iannillo et al. [78], Jin et al. [86], Jing et al. [87], Johansson et al. [91], Kalysch et al. [95], Kaksonen et al [94], Katz et al.
[97, 98], Kuk and Kim [105], Kövi and Micskei [106], Liu et al. [118], Looker et al. [119–121], Maji et al. [126], Martin
et al. [128, 129], Mattiello-Francisco et al., [131, 132], Micskei et al. [137, 138], Miller et al. [139–141], Montrucchio et al.
[142, 143], Naceur et al. [146], Oláh and István, [154], Pattabiraman and Zorn [157], Popovic and Kovacevic [159], Powell
et al. [160], Quing-He et al. [161], Rabhi [162], Rollet and Saad-Khorchef, [167], Rollet and Salva [168, 169], Rychlý and
Žouželka [172], Saad-Khorchef et al. [173], Salas et al. [174], Salva and Rabhi [176, 177], Sasnauskas and Regehr [178],
Schmid et al. [179], Shahpasand et al. [182], Shelton et al. [155], Siblini and Mansour [186], Siewiorek et al., [187], Suh
et al., [190], Tarhini et al. [191], Ufuktepe and Tuglular [193], Vasan and Memon [195], Velasco et al. [196], Winter et al.
[204], Xiang et al. [212], Xu et al. [214], Yang et al. [215], Ye et al. [216], Yi et al. [218], Zamli et al. [219]

distinguish correct behavior from incorrect, although works using more complex schemes tend
to adopt four or !ve categories, with most using some variation of the CRASH scale [103].

There are clear challenges associated with the evaluation of robustness of new types of systems,
among which we identify the selection of the technique (e.g., model-based, experimental), the
target of the evaluation (e.g., an API, a message, message !elds) the selection of the faults (e.g.,
timing faults, boundary values), and !nally how to classify behavior (i.e., the selection/adaption
of a failure mode scale and how to retrieve the necessary information from the system to allow

ACM Computing Surveys, Vol. 54, No. 4, Article 89. Publication date: April 2021.

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

About the classification models…

• Heterogeneous!
• General concern with the severity of the failure
• Complex structures
• Finer grain
• Classification difficulties à error prone
• Tend to be more system-specific

• Binary classification is prevalent (more than half of the works)
• CRASH is prevalent among the non-binary (in 14% of the works)
• Huge heterogeneity among the remaining

84Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Highlights

85Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Highlights (1)

• First works focus on operating systems
• Fault injection and model-based testing are the main techniques

used
• Fuzzing, code changes injection, mutation testing, or model-based

analysis
• Message fields are the main target, although messages are also used
• Function invocations are popular (API, function, system calls, driver

calls)

86Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Highlights (2)

• Invalid inputs dominate the types of faults
• Random, boundary, bit-level, and timing faults also relevant
• Faults at the message-level and invalid values returning function calls
• Correct / Incorrect behavior
• Many use adaptations of CRASH

87Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Research challenges

88Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Challenge – Systems (1)
• There are types of systems for which robustness evaluation

techniques are unknown or rising

• Blockchain systems
• Complexity
• Strong integrity concerns
• Timing requirements
• Recent work on fuzzing smart contracts

89Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Challenge – Systems (2)
• REST services

• Cyber-physical systems
• Strong interaction between physical and computation parts
• Uncertainty of the environment and nature of the system

90Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Challenge – Interplay
• Interplay between robustness and safety

• Autonomous driving cars or Unmanned Aerial Vehicles
• Strong safety concerns
• Highly dynamic and uncertain environments

• How to characterize robustness in perspective with the different
safety requirements of such systems?

91Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Challenge – Machine Learning
• Heterogeneous terminology
• Resilience, reliability, adversarial robustness, trustworthiness

• Non-determinism
• Explainability should be considered
• Rising methods and tools
• Many quite different from classic methods
• Target is sometimes the machine learning model, or the system
• Training phases are to be considered
• Changes in the environment also

92Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Challenge – Autonomous systems
• Machine learning parts along with other engineered components

(sometimes distributed)
• Handle strict requirements regarding reliability or safety
• Lack of robustness may compromise other system properties (e.g.,

timeliness, security)

93Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Challenge – Classification
• Standardized methods for classifying robustness across

(heterogeneous) systems
• One size fits all?
• Foster comparability of results

94Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Filling one of the gaps…
REST case study

95Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

REST
• Major companies now provide a REST interface to their services
• Interface description document is not required, although OpenAPI is

increasingly being adopted
• Less rigid access opens space for unexpected inputs to reach the

service
• Client mistakes may be acceptable, but not server mistakes
• Developers have additional tasks
• Matching HTTP verbs
• Selecting how inputs should be specified (body, path, query)
• Responses include two main parts (header / body) that may not be

consistent
96Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

A simple approach

• Invalid + boundary + random inputs
• CRASH for classifying failures + behavior tags

• Can we use this to evaluate the robustness of REST services?
• Can we use this to trigger failures in business critical services?
• Which kind of issues can we detect?

97

N. Laranjeiro et al.: Black Box Tool for Robustness Testing of REST Services

kinds of testing (e.g., regression testing) [54]. In the industry
there is also a wide variety of tools for testing REST services
[55]–[57], but these largely focus on functional or perfor-
mance testing and do not specialize in evaluating robustness.
Their adaptation to a typical robustness testing approach is
either not possible (e.g., licensing issues) or not practical due
to involving complex adaptation code.
In summary, current testing approaches for REST are either

complex ones (e.g., involving genetic algorithms, requiring
expertise for necessary artifacts) or are simply intrinsically
different from the one proposed in this paper (e.g., white-box
aproaches, model-based).
In this paper, we describe bBOXRT, a simple rule-based

black-box tool which is particularly specialized in robustness
evaluation and demonstrate its effectiveness in disclosing
robustness issues, even in highly tested business critical ser-
vices, where robustness is a major concern.

III. APPROACH FOR EVALUATING THE ROBUSTNESS OF
REST SERVICES
This section describes the approach defined for testing the
robustness of REST services. We first explain the main con-
cepts that support the approach and then introduce bBOXRT
tool. We overview the tool’s internal architecture and explain
the different roles and responsibilities of its main components
and how they work together to support each of the steps of the
approach.

FIGURE 1. Conceptual view of the approach.

A. APPROACH OVERVIEW
The conceptual view of our approach is shown in Figure 1.
In practice, using information regarding the interface of
the service under test (i.e., API description document),
our approach generates a combination of valid and invalid
requests that attempt to activate faults present in the service.
The approach is decomposed in the following steps: -

• Step 1: Interface description analysis. Basic informa-
tion about the service under test is collected by reading
and analysing the service’s interface description docu-
ment. Information regarding operations (e.g., resource
URIs and HTTP verbs to use), input and output data
types, error codes, or example requests is gathered to
be used in the next steps.

• Step 2: Workload generation and execution. Valid
requests (i.e., correct according to the specification) are
generated and sent to the service. This allows us to
understand the behavior of the service in presence of a
non-faulty workload.

• Step 3: Faultload generation and execution. Faulty
requests are created by injecting a single fault in each
request (e.g., a field is removed from a JSON document).
The faulty requests are sent to the service in an attempt
to trigger erroneous behaviors.

• Step 4: Result storage and analysis. Service responses
and test metadata (e.g., type of fault injected, resource
targeted) is stored for supporting the subsequent behav-
ior analysis.

In the next section (III-B), we explain these steps in further
detail and how they map to our tool’s different components.

B. TOOL ARCHITECTURE AND OPERATION
The tool was implemented in Java, and was developed with
modularity and extensibility in mind. Users may add new
functionalities to some of the tool’s components to optimize
its operation with respect to their use cases. The tool’s inter-
face is command-line and its source code and documentation
are available at [21]. The architecture of the tool is shown
in Figure 2, which depicts bBOXRT as a container whose
frontiers are delimited by a dashed rectangle. It is comprised
of multiple components that interact with each other and/or
with external entities, as detailed in the following paragraphs.

FIGURE 2. bBOXRT architecture.

The API Specification Parser is the component that sup-
ports Step 1 - Interface description analysis (identified in
the previous section). It reads an OpenAPI document (for-
merly known as Swagger [58]), specified in either JSON or
YAML format, that describes the interface of a given REST
service. The OpenAPI specification is becoming a popular
option for describing interfaces for this type of services [2]
and this is the reason we chose to support it, by default.
However, users may extend the tool to support for other API
specification languages (e.g., RAML [59]).
The main idea behind this first step is to identify and

extract relevant information for testing the service. An API
specification defines one or more target server URLs and
the set of unique API endpoint URIs (i.e., unique resources
at the server). Each endpoint is associated to one or more
HTTP verbs [1], typically POST, GET, PUT and DELETE
(PATCH and HEAD may also be found in some APIs). Each
set {endpoint, verb} is named an operation. Finally,
each operation may have from none to several input param-
eters (e.g., headers, payload), as well as a set of different

VOLUME 9, 2021 24741

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Results overview (1)

• 52 services public and in-house
• Examples: Google drive, Google Calendar, Spotify, Trello, Slack,

Figshare, Docker Engine API
• Private company services

• Failures triggered in half of the 52 services
• 12% of the 1352 operations tested showed at least one problem
• Could happen in in-house or in services built with no robustness

requirements, how about in business-critical services?

98Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Results overview (2)

• 52 services public and in-house
• Examples: Google drive, Google Calendar, Spotify, Trello, Slack,

Figshare, Docker Engine API
• Private company services

• Failures triggered in half of the 52 services
• 12% of the 1352 operations tested showed at least one problem
• Could happen in in-house or in services built with no robustness

requirements, how about in business-critical services?

99Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Private company services

• An empty value in an argument caused:
• 503 service unavailable + datastore fatal error

• A few other similar failures
• All issues were confirmed by developers

100Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

What have we learned? (1)

• REST services are being made available on-line, carrying residual bugs
that affect the overall robustness of the services
• Bugs disclosed at the service implementation and middleware levels
• Security issues were triggered
• Malicious inputs
• wrong input usage or missing validation

• Information disclosure was frequent
• Code structure, SQL commands, database structures, or database vendor.

• Null, empty, and string-related faults were the most effective faults
• Strings: Random characters and malicious were quite effective.

101Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

What have we learned? (2)

• Frequent problems observed included storage operations, null
references, and conversion issues
• Contrary to previous work in SOAP, the null/empty value faults that

triggered issues
• Did not actually directly led to the disclosure of null references problems.
• Triggered other kinds of problems (e.g., Data Access Operations)
• Triggered issues that were masked by services and resulted in vague

responses

• Only Abort and Hindering failures were triggered (remaining seem
difficult to trigger in this context)

102Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

What have we learned? (3)

• Only Abort and Hindering failures were triggered (remaining seem
difficult to trigger in this context)
• Mismatches between the interface description and the actual service

implementation were detected
• Current OpenAPI specifications are being written without attention

to basic operation details (e.g., missing data type details)
• Several of these cases turned out to be associated with robustness problems

• OpenAPI specifications lack complete information regarding the
expected behavior of the service (e.g., when in presence of invalid
inputs),
• Doubts when analyzing tests results
• Issues for application integration

103Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

What have we learned? (4)

• In almost half of the services tested, we found non descriptive error
messages (accompanied with a poor specifications)
• Do not allow clients to gain much insights regarding the real issues

• Access to server logs was not sufficient to understand the root cause
of failures in the Docker Engine.
• Useful even in services with high reliability requirements
• Missing validation is the main cause for problems in in-house services
• Although some related with poor practices
• Some obvious to avoid by senior programmers (e.g., using prepared

statements)
• Others would be difficult to detect (e.g., the use of a driver holding a bug).

• Robustness testing results were highly repeatable
104Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Wrapping up…
The road ahead
• REST is the de facto interface of many systems and system parts
• Worthwhile exploring in the context of more complex systems
• Other properties involved, safety, timeliness,…

• Can robustness assessment techniques help in more reliable and
secure blockchain systems?
• Systems using machine learning models
• Non-determinism
• Models and engineered parts
• New methodologies required

105Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Questions?

106Nuno Laranjeiro 14th International Workshop on Software Engineering for
Resilient Systems (SERENE 2022)

