A Perspective on Three Decades of
Software Robustness Assessment

Nuno Laranjeiro
cnl@dei.uc.pt

UNIVERSIDADE B

COIMBRA

14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022), September 2022

Outline

* Context
* Robustness assessment throughout the years
 Highlights and challenges

e Lessons learned with REST

Context

Source: instagram.com/citybestviews https://youtube.com/watch?v=n-iAyFZDgrE

Software and Systems Engineering Group

* 16 (+ 5) PhD members
* 34 PhD students
e ~20 MSc students

e https://www.cisuc.uc.pt/en/SSE

Dependability
and Security

Al in critical
applications

Engineering

https://www.cisuc.uc.pt/en/SSE

Nuno’s background — Research

* Verification & Validation techniques
* Experimental dependability assessment

* Robustness testing

* Web services robustness, middleware (e.g.,
messaging)

e Security and interoperability assessment v

* Blockchain security

processes (V&YV)

* Machine learning to in software engineering *&) i

* https://eden.dei.uc.pt/~cnl

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

—

Software robustness
assessment in
the last 3 decades

Before this talk...

* Nuno Laranjeiro, Joao Agnelo, and Jorge Bernardino. 2021. A
Systematic Review on Software Robustness Assessment. ACM
Computing Surveys 54, 4, Article 89 (May 2022), 65 pages.
https://doi.org/10.1145/3448977

* Nuno Laranjeiro, Joao Agnelo and Jorge Bernardino. 2021. A Black
Box Tool for Robustness Testing of REST Services. IEEE Access, vol. 9,
pp. 24738-24754, 2021, doi: 10.1109/ACCESS.2021.3056505.

Definitions

* Robustness is the degree to which a certain system or component
can operate correctly in the presence of invalid inputs or stressful
environmental conditions

* Robustness assessment aims at characterizing the behavior of a
system in presence of a particular class of faults (i.e., external faults)

Motivation

 Software systems now support our daily lives
* Entertainment, business, healthcare, ...

 Residual faults may be activated by erroneous or malicious inputs, or
stressfull conditions

* A software failure may lead to disastrous consequences
* Financial losses, safety issues

* Robustness assessment activities are essencial
* How does your autonomous car react in presence of a STOP sign?
 What if the STOP sign is slightly damaged?
* What if the camera system in your car malfunctions?
* How will your autonomous car operate during an earthquake? or during
road-side constructions?

Motivation — Example 1

* Let’s have a look at this robustness assessment example

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

14

Motivation — Example 2

* Another robustness assessment example

e https://www.youtube.com/watch?v=aFuA50H9uek

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

15

https://www.youtube.com/watch?v=aFuA50H9uek

Motivation

* Long period of known research on robustness evaluation
* Large number of works on robustness assessment
 Large heterogeinity of approaches and targeted systems

* No large-scale view of robustness assessment approaches

The process

* Reviewed research from 1990 — 2020
 Research strongly connected to Al/ML was not considered

* The systematic reviewing process lead to the identification of 145
works on robustness evaluation

Open questions

* Which types of software systems are the subject of robustness evaluation?
* Which techniques are used to evaluate software robustness?

* Which are the targets used by software robustness evaluation approaches?
* Which types of faults are being used in software robustness evaluation?

* Which are the methods used to characterize robustness?

Which types of software
systems are the subject of
robustness evaluation?

Types of systems

* Operating systems
* General-purpose, including mobile

* Communication systems
* Network-centric systems, including protocol implementations

* Embedded systems

* Designed to handle a certain single specific task
* Often used in mission or safety-critical environments
* Time as an important property

Types of systems

* Middleware

 Software components

* Commercial Off-the-shelf software and applications (COTS), that do not
overlap with other groups (namely, general purpose OS)

* Other reusable software (libraries)
* Web services
* HTTP-based, including SOAP services and web applications

* Autonomous and adaptive systems

» Systems that are able to adapt to environment changes
e Usually involve a feedback loop

Distribution across time

‘Operatingsystems (35) - . . s e+ @ . c o o N B

Communication systems (12) . . o o
Embedded systems (25) . . o o & o o e s|ofc ~
Middleware (12) . . o o o c c of c
Software components (25) o o . c o o . o ° - . 5ol
Web services (23) o o o o .
Autonomous and adaptive systems (13) . . o o o S o
O . AN M < 1D O N0 OO O d N OO < 1D ON W OO O I AN N < 1N ON 0 O O
a O O O OO OO O O O OO O O O O O O OO0 00O ™« = = = oA A A A A =
DDA DO O OO0 OO0 0000000000000 o0 O
™ = 1 1 H H AN AN AN AN AN AN AN AN AN AN N NN NN AN N NN NN
Nuno Laranjeiro 14th International Workshop on Software Engineering for 22

Resilient Systems (SERENE 2022)

Count

v A W N -

Operating systems

Nuno Laranjeiro

Windows CE
13%

14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

23

A classic example (Ballista project)

Test computer Monitor computer
Operating System

Under Test

) Kernel API
Invalid

4 eccccescsccccscscsses
valid

inputs

Test Process

Starter Process Watchdog Process

network

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

24

Approach

* Set of system calls in the operating system API

* Definition of valid inputs used along with invalid inputs for each data
type in the call parameters

* Invalid inputs — values holding particular characteristics, which tend
to be the source of robustness problems (e.g., NULL, 0, 1, -1, string
overflow, special characters).

* Mature systems, but... results showed significant failures in the
ability to gracefully or correctly handle exceptional conditions.

Failure classification

 Catastrophic (operating system crashes or multiple tasks affected)
* Restart (process hangs and requires restart)

e Abort (process aborts)
* Silent (exception was not signaled but should have been)

* Hindering (incorrect exception signaled)

Failure classification

 Catastrophic (operating system crashes or multiple tasks affected
* Restart (process hangs and requires restart)

* Abort (process aborts)
* Silent (exception was not signaled but should have been)

* Hindering (incorrect exception signaled)

Operating Systems (highlights) (1)

* Testing is the main approach among OS
* Combination of valid and invalid inputs
* Kernel as starting point

* Challenges

* Good quality workloads are important
* Code/functionality coverage

« Difficult to identify certain types of failures
* Observation points and oracles

* Application to multi-version software
* Check the conformance to standards

Operating Systems (highlights) (2)

* Focus on better workloads
* From kernel to libraries, utilities, drivers
e Same programming mistakes repeatedly observed over time

* Move from traditional to mobile operating systems

Distribution across time

Operating systems (35) o e . c o @ o c o o © ¢+ o o + e o -
‘Communication systems (12) . . o o
Embedded systems (25) . . e o & o o o« o . o
Middleware (12) . . o o e o e . o o«
Software components (25) o . c o o . e ° ° . e * o
Web services (23) o o o o .
Autonomous and adaptive systems (13) . . o o o S o
O . AN M < 1D O N0 OO O d N OO < 1D ON W OO O I AN N < 1N ON 0 O O
a O O O OO OO O O O OO O O O O O O OO0 00O ™« = = = oA A A A A =
OO DD O O OO0 OO0 00000000000 0 0 O O
™ = 1 1 H H AN AN AN AN AN AN AN AN AN AN N NN NN AN N NN NN
Nuno Laranjeiro 14th International Workshop on Software Engineering for 30

Resilient Systems (SERENE 2022)

Count

v A W N -

Communication systems

Nuno Laranjeiro

14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

31

Common approach

 Testing and Test Control Notation Version 3 (TTCN-3)

* A strongly typed testing language used in conformance testing of
communicating systems

Invalid
Input Output Messages Input Output
P P o P P Robustness Robustness
Labelled Inopportune Labelled Test Cases TTCN-3 Test
Transition E S Transition — —
+ Generator Cases
System Unexpected System
outputs
Nominal system Mutated Test case
. Fault model e . Test cases
behavior model specification generation Tool

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

32

Communication systems (highlights)

* One of the least explored groups

* Session Initiation Protocol as the frequent case study
* Frequent use of TTCN-3

* Prevalence of model-based approaches

Distribution across time

Operating systems (35) o e . c o @ o c o o © ¢+ o o + e o -
Communication systems (12) . . o o
‘ Embedded systems (25) . . R
Middleware (12) . . o o e o o . o o«
Software components (25) o o . c o o . o ° - . 5ol
Web services (23) o o o o .
Autonomous and adaptive systems (13) . . o o o S o
O . AN M < 1D O N0 OO O d N OO < 1D ON W OO O I AN N < 1N ON 0 O O
a O O O OO OO O O O OO O O O O O O OO0 00O ™« = = = oA A A A A =
OO DD O O OO0 OO0 00000000000 0 0 O O
™ = 1 1 H H AN AN AN AN AN AN AN AN AN AN N NN NN AN N NN NN
Nuno Laranjeiro 14th International Workshop on Software Engineering for 34

Resilient Systems (SERENE 2022)

Count

v A W N -

Embedded systems

Embedded i
S vicrokernels ® Otrong focus on real-time
4% ere . .
SVS;;mS * Traditionally important in aerospace
° Real-time) . .
systems * Increasingly important in autonomous

18% systems

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022) 35

Evaluation of an embedded system

1111

Subsystem A

Msg [@eseese ; Fault Injector

v
v Msg

Subsystem B Subsystem C

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

36

Embedded systems (highlights)

* Techniques used at very diverse abstraction levels
* From system interfaces to processor registers

* Faults used are also quite diverse
* Interface parameter mutations (e.g., invalid or boundary values)
* bit-flips on processor registers
* message-level faults (e.g., reordering messages)
* timing faults.

Distribution across time

Operating systems (35) o . . s e o @ . e o o ololololololc 5| o
Communication systems (12) . . o o

Embedded systems (25) . . L S T S o o e .

‘ Middleware (12) 1 T 1T TTTTTT T 5
Software components (25) o o . c o o . o ° - . 5ol

Web services (23) o o o o .

Autonomous and adaptive systems (13) . . o o o S o
O . AN M < 1D O N0 OO O d N OO < 1D ON W OO O I AN N < 1N ON 0 O O
a O O O OO OO O O O OO O O O O O O OO0 00O ™« = = = oA A A A A =
DD DO OO OO0 000000000000 O O O
™ = 1 1 H H AN AN AN AN AN AN AN AN AN AN N NN NN AN N NN NN
Nuno Laranjeiro 14th International Workshop on Software Engineering for 38

Resilient Systems (SERENE 2022)

Count

v A W N -

Middleware

* Heterogeneous category
* Mainstream (CORBA, JMS, DDS)
* High availability middleware/architecture

* Management platforms (cloud)

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022) 39

MOM example

Sender

Application

Instrumented

Middleware

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

Mutated
Msg

Provider

Receiver

Application

Middleware

Message store

Middleware

40

Distribution across time

Operating systems (35) o e . e o <+ @ o c o o e o o o * e o
Communication systems (12) . . o o
Embedded systems (25) . . L S T S o o e .
Middleware (12) . . o o e o o . o o« o

‘Softwarecomponents (25) o o . c o . o *° ° . .

Web services (23) o o o o .
Autonomous and adaptive systems (13) . . o o o S o
O . AN M < 1D O N0 OO O d N OO < 1D ON W OO O I AN N < 1N ON 0 O O
a O O O OO OO O O O OO O O O O O O OO0 00O ™« = = = oA A A A A =
A OO OO O O O OO OO O O OO O OOOOOOOOOOOoOOoOOoOoOo o o
™ = 1 1 H H AN AN AN AN AN AN AN AN AN AN N NN NN AN N NN NN

Nuno Laranieiro 14th International Workshop on Software Engineering for a1
) Resilient Systems (SERENE 2022)

Count

v A W N -

Software components

Stateful
IGU| applications
applications 0
Wearable 4% 4%

* COTS applications and components applications
8%

* Mobile and wearables COTS DBMS
8%

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022) 42

Software components example

* Fault injection as common technique Test computer

* Code changes injection second main technique Fault Injection Wrapper

» API calls and also machine code as targets
COTS Application

£

* Invalid and random inputs

Kernel API

Operating System

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022) 43

Distribution across time

Operating systems (35) o e . c o @ o c o o © ¢+ o o + e o -
Communication systems (12) . . o o
Embedded systems (25) . . o o & o o e s|ofc ~
Middleware (12) . . o o o c c of c
Software components (25) o . c o o . e ° ° . e * o
‘ Web services (23) . o o . .
Autonomous and adaptive systems (13) . . o o o S o
O . AN M < 1D O N0 OO O d N OO < 1D ON W OO O I AN N < 1N ON 0 O O
a O O O OO OO O O O OO O O O O O O OO0 00O ™« = = = oA A A A A =
A OO OO O O O OO OO O O OO O OOOOOOOOOOOoOOoOOoOoOo o o
™ = 1 1 H H AN AN AN AN AN AN AN AN AN AN N NN NN AN N NN NN

Nuno Laranieiro 14th International Workshop on Software Engineering for a4
) Resilient Systems (SERENE 2022)

Count

v A W N -

Web services

BPEL compositions
9%

Strong empahsis on SOAP web services
Targets of the techniques now also set on
the interface description

Several cases also focused on delivering tools
Fault injection with invalid inputs over
message fields

e 2015 as the last year of work on SOAP

* Research on REST is rising

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022) 45

Web services - example

Nuno Laranjeiro

WSDL

Mutant 1| \wWSDL
Mutant 2

WSDL
Mutant N

®

Client 1

Client 2 |

Client N

O

’ Mutant

Generator

@HTTP/SOAP

WSDL

coceccce

SOAP web service

Service
Implementation

Middleware

14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

46

Distribution across time

Operating systems (35) o e . c o @ o c o o © ¢+ o o + e o -
Communication systems (12) . . o o
Embedded systems (25) . . o o & o o e s|ofc ~
Middleware (12) . . o o o c c of c
Software components (25) o . c o o . e ° ° . e * o
Web services (23) o o o o .
Autonomous and adaptive systems (13) . . o o o S o
O . AN M < 1D O N0 OO O d N OO < 1D ON W OO O I AN N < 1N ON 0 O O
a O O O OO OO O O O OO O O O O O O OO0 00O ™« = = = oA A A A A =
’ A OO OO O O O OO OO O O OO O OOOOOOOOOOOoOOoOOoOoOo o o
™ = 1 1 H H AN AN AN AN AN AN AN AN AN AN N NN NN AN N NN NN

Nuno Laranieiro 14th International Workshop on Software Engineering for 47
) Resilient Systems (SERENE 2022)

Count

v A W N -

Autonomous and adaptive systems

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

48

Autonomous and adaptive - example

Self-Adaptive Software System
* Stateless / stateful

. .. Controller
* Typical faults, but timing and _
MACD also relevant Adaptl | Monitor
* Increasing presence of research in
FI
autonomous systems Target System ;

Affect 1 1Monitor

Environment

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022) 49

Which techniques are being
used to assess robustness?

Technigues distribution

Fault injection (107) o e . c e @0 @ ° @ ® ‘ 00 0 o
Model-based testing (34) . . c o | o
Interception (21) o ° . ol c
Fuzzing (16) -
Codechangesinjection (13) . o o e o o o
Model-based analysis (6) . o o] ¢
Mutation testing (6) o ol ol o

Static code analysis (2)

Load testing (1)

1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009

2010
2011
2012

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

2013

2014

2015

2016

2017

2018

2019

2020

51

Count
. 1
° 2

3
[4

5
® 6

7
® 3
® °

Technigues — Operating systems

) Feutniecton 107 I -

Model-based testing (34) -

S
Interception (21) - I I

3
e . m Operating systems
% ruzne (6] _ ® Communication systems
*éo Code changesinjection (13) I - embedded systems
E Model-based analysis (6) II I I Middleware
Mutation testing (6) . I m Software components

Static code analysis (2) Web services

Load testing (1) I ® Autonomous and Adaptive systems

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

Nuno Laranjeiro 14th International Workshop on Software Engineering g%s”i‘é%@ﬁt@m?%%& 2022) 52

Technigues — Communication systems

routinjction (107) - | I =
»Model-basedtesting (34) - -

03-’_ Interception (21) -I I I w Operatingsystems
§ ruzne (6] -- ® Communication systems
Eo Code changesinjection (13) I - Embedded systems
E Model-based analysis (6) II I I Middleware
Mutation testing (6) . I m Software components
Static code analysis (2) I Web services
Load testing (1) I m Autonomous and Adaptive systems

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

Nuno Laranjeiro 14th International Workshop on Software Engineering g%sll!ignat.g\gtgm(s:%m;h 2022) 53

Testing technique

Technigues — Embedded systems

Fault injection (107) _- _ -
Model-based testing (34) - -
Interception (21) -I I I '
Fuming (16) - M Operating systems

m Communication systems
Code changesinjection (13) I -

Model-based analysis (6) II I I

Embedded systems

Middleware
Mutation testing (6) . I W Software components
Static code analysis (2) I Web services
Load testing (1) I m Autonomous and Adaptive systems

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

Nuno Laranjeiro 14th International Workshop on Software Engineering g%sll!ignat.g\gtgmggm;h 2022) 54

Testing technique

Technigues — Middleware

Fault injection (107) _- _ -
Model-based testing (34) - -
Interception (21) -I I I '
Fuming (16) - M Operating systems

m Communication systems
Code changesinjection (13) I -

Model-based analysis (6) II I I

Embedded systems

Middleware
Mutation testing (6) . I W Software components
Static code analysis (2) I Web services
Load testing (1) I m Autonomous and Adaptive systems

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

Nuno Laranjeiro 14th International Workshop on Software Engineering g%sll!ignat.g\gtgm(s:%m;h 2022) 55

Technigues — Software components

Fault injection (107)

»Model-based testing (34)

Interception (21)
» Fuzzing (16)
de changesinjection (13)
Model-based analysis (6)
Mutation testing (6)
Static code analysis (2)

Load testing (1)

Nuno Laranjeiro

m Operating systems
-

m Communication systems

Embedded systems

II II Middleware

. I W Software components

0

Web services

m Autonomous and Adaptive systems

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

14th International Workshop on Software Engineering g%sll!ignat.g\gtgmggm;& 2022) 56

Testing technique

Technigues — Web services

Fault injection (107) _- _ -
Model-based testing (34) - -
Interception (21) -I I I '
Fuming (16) . M Operating systems

m Communication systems
Code changesinjection (13) I -

Model-based analysis (6) II I I

Embedded systems

Middleware
Mutation testing (6) . I W Software components
Static code analysis (2) I Web services
Load testing (1) I m Autonomous and Adaptive systems

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

Nuno Laranjeiro 14th International Workshop on Software Engineering g%sll!ignat.g\gtgm(s:%m;h 2022) 57

Testing technique

Technigues — Autonomous and adaptive

) rtniecton 107 I =
Model-based testing (34) - -

Interception (21) -I I I
m Operating systems
ruzzing (1) I

m Communication systems

Code changesinjection (13) I - Embedded systems

Model-based analysis (6) II I I Middleware
Mutation testing (6) . I m Software components
Static code analysis (2) I Web services
Load testing (1) I m Autonomous and Adaptive systems

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

Nuno Laranjeiro 14th International Workshop on Software Engineering g%sll!ignat.g\gtgmggm;h 2022) 58

About the techniques...

* Mostly experimental (3/4 uses fault injection)

* There is some coupling of techniques to certain types of systems:
* Formal techniques 2 embedded and communication systems
» Code changes injection = Software components
* Fuzzing = operating systems

e Certain combinations were not observed
* e.g., code changes injection and autonomous and adaptive systems

Which are the targets of
robustness evaluation
techniques?

Technique target - distribution

Message fields (37)

System calls (24)

APl calls (20)

Messages (17)

System model (13)
Devicedriver calls (8)
Specification (8)

Function calls (7)

CPU registers (6)

Kernel address space (6)
Machine code (6)

Ul elements or events (5)
Application address space (3)
Command arguments (3)
Source code (3)

Cloud network components (1)

Hardware components (1)

Nuno Laranjeiro

1990
1991
1992
1993
1994
1995

O
o)
o
—

AthnteonatenadVodashan orboftyarad ngioeersng or

199

& &

—

i

. .
e °
o 3 e o
o .
. .
. .
. . .
. . .

siligwt ﬁtegs (gRE& 2(82) 8
N N N N N NN

o
o
o~

o
o
o~

2009
2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

(o))
2020

Count

[]
O A W N R

Message fields (37)

‘ System calls (24)

API calls (20)

Technique target

. M 17
Operating systems essages (17)

System model (13)

‘ Device driver calls (8)

Specification (8)

‘ Function calls (7)

CPU registers (6)

Target

Kernel address space (6)

Machine code (6) W Operating systems

- "
Ul elements or events (5) Communication systems

N m Embedded systems
Application address space (3)

Middleware
Command arguments (3)

m Software components
Source code (3)

B Web services
Cloud network components (1)

m Autonomous and Adaptive systems
Hardware components (1)

o

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systemp§piifdatidR¢ount 62

‘ Message fields (37)

System calls (24)

API calls (20)

Technique target
Communication ‘ Messages (17)

systems ‘ System model (13)

Device driver calls (8)

Specification (8)
Function calls (7)

CPU registers (6)

Target

Kernel address space (6)

Machine code (6) W Operating systems

- "
Ul elements or events (5) Communication systems

N m Embedded systems
Application address space (3)

Middleware
Command arguments (3)

m Software components
Source code (3)

B Web services
Cloud network components (1)

m Autonomous and Adaptive systems
Hardware components (1)

o

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systemp§piifdatidR¢ount 63

Message fields (37)

‘ System calls (24)

API calls (20)

Technique target
Embedded SyStems ‘ Messages (17)

System model (13)

Device driver calls (8)

‘ Specification (8)

Function calls (7)

CPU registers (6)

Target

Kernel address space (6)

Machine code (6) W Operating systems

- "
Ul elements or events (5) Communication systems

N m Embedded systems
Application address space (3)

Middleware
Command arguments (3)

m Software components
Source code (3)

B Web services
Cloud network components (1)

m Autonomous and Adaptive systems
Hardware components (1)

o

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systemp§piifdatidR¢ount 64

Message fields (37)

System calls (24)

API calls (20)

Technique target

. M 17
Middleware essages (17)
System model (13)

Device driver calls (8)
Specification (8)
Function calls (7)

CPU registers (6)

Target

Kernel address space (6)

Machine code (6) W Operating systems

- "
Ul elements or events (5) Communication systems

N m Embedded systems
Application address space (3)

Middleware
Command arguments (3)

m Software components
Source code (3)

B Web services
Cloud network components (1)

m Autonomous and Adaptive systems
Hardware components (1)

o

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systemp§piifdatidR¢ount 65

Message fields (37)

System calls (24)

i API calls (20
Technique target) calls (20)
Software components Messages (17)

System model (13)

Device driver calls (8)
Specification (8)

Function calls (7)

‘ CPU registers (6)

Kernel address space (6)

‘ Machine code (6)

Ul elements or events (5)

Target

H Operating systems
= Communication systems

N m Embedded systems
Application address space (3)

Middleware
Command arguments (3)

m Software components
Source code (3)

B Web services
Cloud network components (1)

m Autonomous and Adaptive systems
Hardware components (1)

o

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systemp§piifdatidR¢ount 66

‘ Message fields (37)

System calls (24)

Technique target API calls (20)

i M 17
Web services essages (17)

—s

Device driver calls (8)

‘ Specification (8)

Function calls (7)

System model (13)

CPU registers (6)

Target

Kernel address space (6)
Machine code (6)

Ul elements or events (5)
Application address space (3)
Command arguments (3)
Source code (3)

Cloud network components (1)

Hardware components (1)

Nuno Laranjeiro

o

2 4 6 8

H Operating systems

= Communication systems

m Embedded systems
Middleware

H Software components

H Web services

m Autonomous and Adaptive systems

10 12 14 16 18 20 22 24 26 28 30 32 34 36
14th International Workshop on Software Engineering for Resilient Systemp§piifdatidR¢ount 67

38

‘ Message fields (37)

System calls (24)

i API calls (20
Technique target) calls (20)
Autonomous and ‘ Messages (17)

o Syst odel (13
adaptive systems ystem model(13)

Device driver calls (8)
Specification (8)
Function calls (7)

CPU registers (6)

Target

Kernel address space (6)

Machine code (6) W Operating systems

- "
Ul elements or events (5) Communication systems

N m Embedded systems
Application address space (3)

Middleware
Command arguments (3)

m Software components
Source code (3)

B Web services
Cloud network components (1)

m Autonomous and Adaptive systems
Hardware components (1)

o

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systemp§piifdatidR¢ount 68

38

About the targets...

* 5 targets dominate the distribution
* Message fields
e System calls
* Messages
e API calls
e System model

 System calls and API calls of frequent usage and distributed along
time
* Message and message fields also distributed, but with a more gaps

About the targets (coupling)

* System calls and kernel address space > operating systems and
embedded systems

* Messages and fields 2 WS, communication systems, and AA
» Exploration of the client-server decoupling

* System model = communication systems and embedded systems
* Modelling necessary to prove critical properties of the system

* API calls 2> middleware and Software components
* Main entry points of this type of software

Which types of faults are
being used in software
robustness evaluation?

Fault type

Types of Faults - distribution

Invalid inputs (85) . o e ° ° . c Qoo
Random inputs (36) - o e . o ® ° -
Boundaryinputs (35) o o e o o ® ° o ©
Bit-level faults (21) o e o e ° o o .
Timing faults (19) e e c o o
MACD (15) . e 11
Invalid outputs (14) . e . . ® °* o o
Programming errors (4) . . . o

Command injection (3)
Inopportuneinputs (3) .
Component failure (2) .
Environmental (2)
Load (1) .
ML model faults (1)

Round-off errors (1) .
O 94 N M < 1N O W O O o N M S 1 ©W N 0 @ O
D DDA DDA O O O O O OO O O O d
A O O O O O O O O O O O
— 4 A d Hd HdHdHdHddNNNCNCNNNNNNN
Nuno Laranjeiro 1

4th International Workshop on Software Engirﬁ(jﬂn%é%igﬁsviéa}wstems (SERE

= 2011
S 2012

2013

2014

2015

2016

2017

2018

2019

2020

Count
. 1
° 2
3
) 4
5
® 6
7
8
9

[EnY
o

72

Types of faults

* Invalid inputs dominate the distribution

 Also popular: random and boundary inputs, bit-level faults, timing
faults, MACD operations, invalid outputs
* Distribution over time

e invalid inputs, MACD and invalid outputs concentrating in the late 2000’s
* boundary, random used regularly, bit-level also
* Timing faults used regularly since the 2000’s

‘ Invalid inputs (85)
‘ Random inputs (36)

Types of faults ‘ Boundary inputs (35)

Operating ‘ Bit-level faults (21)

SVStems Timing faults (19)

MACD (15)

“ Invalid outputs (14)
e

Programming errors (4)

Fault

Command injection (3)
Inopportune inputs (3)
Component failure (2)
Environmental (2)
Load (1)

ML model faults (1)

Round-offerrors (1)

o

5

m Operating systems

® Communication systems

m Embedded systems
Middleware

m Software components

m Web services

m Autonomous and Adaptive systems

20 25 30 35 40 45 50 55 60 65 70 75 80 85

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient sl?ilhl'tqe:imnm_@mt 74

‘ Invalid inputs (85)
RaWG)

Types Of fE\UltS ‘ Boundary inputs (35)

Communication Bt oveb s (21)

SVStems ‘ Timing faults (19)

MACD (15)

InWM

Programming errors (4)

!

Fault type

Command injection (3)
Inopportune inputs (3)
Component failure (2)
Environmental (2)
Load (1)

ML model faults (1)

Round-offerrors (1)

o

5

10

m Operating systems

® Communication systems

m Embedded systems
Middleware

m Software components

m Web services

m Autonomous and Adaptive systems

20 25 30 35 40 45 50 55 60 65 70 75 80 85

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient S?sklb‘.tq@!i{QNEQth 75

‘ Invalid inputs (85)

Random inputs (36)

Types Of fE\UltS Boundary inputs (35)
Embedded - Bit-level faults (21)
SVStems ‘ Timing faults (19)

MACD (15)
Invalid outputs (14)

Programming errors (4)

Fault type

Command injection (3)
Inopportune inputs (3)
Component failure (2)
Environmental (2)
Load (1)

ML model faults (1)

Round-offerrors (1)

o

m Operating systems

® Communication systems

m Embedded systems
Middleware

m Software components

m Web services

m Autonomous and Adaptive systems

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient sl?ilhl'tqe:imnm_@mt 76

85

Invalid inputs (85)

Random inputs (36)
Types Of fE\UltS Boundary inputs (35)
Middleware

Bit-level faults (21)

Timing faults (19)

MACD (15)

Invalid outputs (14)

Programming errors (4)

Fault type

Command injection (3) M Operating systems

Inopportune inputs (3) ® Communication systems

Component failure (2) 1 Embedded systems

Environmental (2) Middleware

Load (1) m Software components

m Web services
ML model faults (1)

m Autonomous and Adaptive systems

Round-offerrors (1)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

o

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient S?sklbﬁﬂ@!i{QNEQth 77

‘ Invalid inputs (85)
‘ Random inputs (36)

Types of faults ‘Boundary inputs (35)
Software

components

Bit-level faults (21)
Timing faults (19)
MACD (15)

Invalid outputs (14)

Programming errors (4)

Fault type

Command injection (3)
Inopportune inputs (3)
Component failure (2)
Environmental (2)
Load (1)

ML model faults (1)

Round-offerrors (1)

o

5

m Operating systems

® Communication systems

m Embedded systems
Middleware

m Software components

m Web services

m Autonomous and Adaptive systems

20 25 30 35 40 45 50 55 60 65 70 75 80 85

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient S?sklbﬁﬂ@!i{QNEQth 78

‘ Invalid inputs (85)

Random inputs (36)

Types of faults ‘Boundary inputs (35)
Web Services Bit-level faults (21)

‘ Timing faults (19)

MACD (15)

!

Invalid outputs (14)

Programming errors (4)

Fault type

0O
o
3
3
Q
o}
[oN
3
)
o
o
o
=}
w

Inopportune inputs (3)
Component failure (2)
Environmental (2)
Load (1)

ML model faults (1)

Round-offerrors (1)

o

5

10

m Operating systems

® Communication systems

m Embedded systems
Middleware

m Software components

m Web services

m Autonomous and Adaptive systems

20 25 30 35 40 45 50 55 60 65 70 75 80 85

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient S?sklb‘.tq@!i{QNEQth 79

‘ Invalid inputs (85)

Random inputs (36)

Types of faults ‘Boundary inputs (35)

Autonomous Bit-level faults (21) _
and Adaptlve ‘ Timing faults (19) _
systems

!

MACD (15)

Invalid outputs (14)

Programming errors (4)

Fault type

Command injection (3) M Operating systems

Inopportune inputs (3) ® Communication systems

Component failure (2) 1 Embedded systems

Environmental (2) Middleware

Load (1) m Software components

m Web services
ML model faults (1)

m Autonomous and Adaptive systems
Round-offerrors (1)

o

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient S?s&br“ﬂ@!i@ﬂEQth 80

About the fault types...

* Invalid inputs and boundary inputs span all system types
» Usefulness and applicability

* Random inputs touch nearly all system types

 Half of the works using random inputs target operating systems
* Timing faults are prevalent in embedded systems

* MACD are frequent in communication systems

* Bit-level faults are mostly associated with operating systems and
embedded systems

» Software components are the category in which the most diverse
types of faults have been used

Which are the methods
used to characterize
robusthess?

Classifying robustness

* 13 structures
e 33 different classification schemes

* From binary to 4 categories + 12 subcategories

Kernel failure, Workload failure, File system corruption, No impact

Crash, Fatal error, Application not responding, No failure

No problems detected (FM1), System or applications hang (FM2), System crashes and reboots (FM3), Same as
FM3 but there are corrupted files (FM4)

Reboot, Crash, Application not responding, No effect

Detected failure, Silent failure, Hang failure, Crash failure

Operating System exception, Timeout, Correct result, Silent data corruption

No failure, Class1 (no specification violation), Class 2 (specification violation), Class 3 (crash or hang)

Correct, Timeout, Error, Erratic

Mission success rate, Traffic violations per km, Accidents per km, Time to traffic violation

Correct output, Wrong result, System hang, Exception

No failure, Application error, Application hang, System crash

uno Laranjeiro 14th Tnternational Workshop on Software Engineering for Resilient Systems {(SERENE 2022)

83

About the classification models...

* Heterogeneous!
* General concern with the severity of the failure

e Complex structures
* Finer grain
* Classification difficulties = error prone
* Tend to be more system-specific

* Binary classification is prevalent (more than half of the works)
* CRASH is prevalent among the non-binary (in 14% of the works)
* Huge heterogeneity among the remaining

Highlights

Highlights (1)

* First works focus on operating systems

* Fault injection and model-based testing are the main techniques
used

* Fuzzing, code changes injection, mutation testing, or model-based
analysis

* Message fields are the main target, although messages are also used

* Function invocations are popular (API, function, system calls, driver
calls)

Highlights (2)

* Invalid inputs dominate the types of faults

 Random, boundary, bit-level, and timing faults also relevant

* Faults at the message-level and invalid values returning function calls
* Correct / Incorrect behavior

* Many use adaptations of CRASH

Research challenges

Challenge - Systems (1)

* There are types of systems for which robustness evaluation
techniques are unknown or rising

* Blockchain systems
* Complexity
Strong integrity concerns
* Timing requirements
Recent work on fuzzing smart contracts

Challenge - Systems (2)

e REST services

* Cyber-physical systems
e Strong interaction between physical and computation parts
* Uncertainty of the environment and nature of the system

Challenge - Interplay

* Interplay between robustness and safety

e Autonomous driving cars or Unmanned Aerial Vehicles
» Strong safety concerns
* Highly dynamic and uncertain environments

* How to characterize robustness in perspective with the different
safety requirements of such systems?

Challenge — Machine Learning

* Heterogeneous terminology
» Resilience, reliability, adversarial robustness, trustworthiness

* Non-determinism
* Explainability should be considered

* Rising methods and tools
* Many quite different from classic methods
* Target is sometimes the machine learning model, or the system
* Training phases are to be considered
* Changes in the environment also

Challenge — Autonomous systems

* Machine learning parts along with other engineered components
(sometimes distributed)

* Handle strict requirements regarding reliability or safety

 Lack of robustness may compromise other system properties (e.g.,
timeliness, security)

Challenge - Classification

 Standardized methods for classifying robustness across
(heterogeneous) systems

* One size fits all?
* Foster comparability of results

Filling one of the gaps...
REST case study

REST

* Major companies now provide a REST interface to their services

* Interface description document is not required, although OpenAPI is
increasingly being adopted

* Less rigid access opens space for unexpected inputs to reach the
service

* Client mistakes may be acceptable, but not server mistakes

* Developers have additional tasks
e Matching HTTP verbs
* Selecting how inputs should be specified (body, path, query)

* Responses include two main parts (header / body) that may not be
consistent

A simple approach

AN -
}
REST API -
Description i
bBOXRT | <
Robustness Nemmmmmme e ’ REST servi
Testing Tool service

* Invalid + boundary + random inputs
* CRASH for classifying failures + behavior tags

e Can we use this to evaluate the robustness of REST services?

* Can we use this to trigger failures in business critical services?
* Which kind of issues can we detect?

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

97

Results overview (1)

* 52 services public and in-house

* Examples: Google drive, Google Calendar, Spotify, Trello, Slack,
Figshare, Docker Engine API

* Private company services

* Failures triggered in half of the 52 services
* 12% of the 1352 operations tested showed at least one problem

* Could happen in in-house or in services built with no robustness
requirements, how about in business-critical services?

Results overview (2)

* 52 services public and in-house

* Examples: Google drive, Google Calendar, Spotify, Trello, Slack,
Figshare, Docker Engine API

* Private company services

* Failures triggered in half of the 52 services
* 12% of the 1352 operations tested showed at least one problem

* Could happen in in-house or in services built with no robustness
requirements, how about in business-critical services?

Nuno Laranjeiro 14th International Workshop on Software Engineering for Resilient Systems (SERENE 2022)

99

Private company services

* An empty value in an argument caused:
* 503 service unavailable + datastore fatal error

* A few other similar failures
* All issues were confirmed by developers

What have we learned? (1)

* REST services are being made available on-line, carrying residual bugs
that affect the overall robustness of the services

* Bugs disclosed at the service implementation and middleware levels

 Security issues were triggered
* Malicious inputs
e wrong input usage or missing validation

* Information disclosure was frequent
» Code structure, SQL commands, database structures, or database vendor.

* Null, empty, and string-related faults were the most effective faults
 Strings: Random characters and malicious were quite effective.

What have we learned? (2)

* Frequent problems observed included storage operations, null
references, and conversion issues

 Contrary to previous work in SOAP, the null/empty value faults that
triggered issues
* Did not actually directly led to the disclosure of null references problems.
* Triggered other kinds of problems (e.g., Data Access Operations)

* Triggered issues that were masked by services and resulted in vague
responses

* Only Abort and Hindering failures were triggered (remaining seem
difficult to trigger in this context)

What have we learned? (3)

* Only Abort and Hindering failures were triggered (remaining seem
difficult to trigger in this context)

* Mismatches between the interface description and the actual service
implementation were detected

* Current OpenAPI specifications are being written without attention
to basic operation details (e.g., missing data type details)

» Several of these cases turned out to be associated with robustness problems

* OpenAPI specifications lack complete information regarding the
expected behavior of the service (e.g., when in presence of invalid
inputs),

e Doubts when analyzing tests results
* |ssues for application integration

What have we learned? (4)

* In almost half of the services tested, we found non descriptive error
messages (accompanied with a poor specifications)

* Do not allow clients to gain much insights regarding the real issues

* Access to server logs was not sufficient to understand the root cause
of failures in the Docker Engine.

» Useful even in services with high reliability requirements

* Missing validation is the main cause for problems in in-house services
* Although some related with poor practices

* Some obvious to avoid by senior programmers (e.g., using prepared
statements)

» Others would be difficult to detect (e.g., the use of a driver holding a bug).
* Robustness testing results were highly repeatable

Wrapping up...
The road ahead

* REST is the de facto interface of many systems and system parts

* Worthwhile exploring in the context of more complex systems
* Other properties involved, safety, timeliness,...

* Can robustness assessment techniques help in more reliable and
secure blockchain systems?

 Systems using machine learning models
* Non-determinism
 Models and engineered parts
 New methodologies required

Questions?
?

COFFEE
IS THE

§ FT 2o Y
[WHO CARES WHAT THE QUESTION IS!)

J—

