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Technology is changing all the time

Pan Am Airlines

transferring 

5 MB hard drive in 1956

So are 

the methods
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Internet of Things - the Impact

 Over 20 billion IoT devices will be connected by 
2020 (Gartner), some talk about over 100 B by 
2025

 Economic impact of IoT technology: 

2.7 to 6.2 trillion dollars turnover by 2025

(McKinsey & Co.)

 Many of IoT devices have to operate in 
environments characterized by uncertainty, 
insecurity (both physical and cyber), and 
instability



The Three Tyrants* Challenge

• Complexity

 Growth in practice can hardly be stopped
 Striving for new functional features
 Striving for improved properties (e.g. higher 

performance, higher reliability) 
 Striving for having everybody and everything on the net
 Open systems, adding environment, including people
 BIG DATA, data analytics 

• Time
 Time can neither be stopped nor regained
 Disparity between physical and logical time

• Uncertainty 
- Can be controlled to a limited extent, we have “to cope” 

with it
- New failure modes, new environmental conditions, new 

attacks 
*Inspired by a quote from Johann Gottfried von Herder (1744-1803): Die zwei größten Tyrannen der Erde: der Zufall und die Zeit

“Two biggest tyrants on Earth are: the chance and the time.”



Paradigm Shift

From analyzing the past and the present to predicting and 
constructing the future

The way to go:

predictive analytics



Change Your Mindset

Don‘t wait for a failure, 
anticipate and avoid it,

or at least minimize the potential damage 



Five-Minute Prediction

www.naturalsciences.be

www.ortixdesign.com

for computers is like …           FIVE-DAY prediction for tsunami



What Is Predictive Analytics?

 Predictive analytics applies a set of models, 
methods/algorithms and classifiers that use 
historical and current data to forecast future 
activity, behavior and trends. 

 Predictive analytics involves creating predictive 
models and applying stochastic analysis, function 
approximation, machine learning and other 
methods to determine the likelihood of a particular 
event taking place.

 In our field, it is used in proactive fault 
management, failure prediction and predictive 
maintenance 



Models and their Interpretation

The sciences do not try to explain, they hardly even try 

to interpret, they mainly make models. By a model is 
meant a mathematical construct which, with the 
addition of certain verbal interpretations, describes 
observed phenomena. The justification of such a 
mathematical construct is solely and precisely that it is 
expected to work. 

John von Neumann (1903 - 1957)



The Three Tyrants and the Models

• Complexity
 many models are useless

 most models do not scale

• Time
 most models do not consider time

• Uncertainty

- most models consider neither faults nor cyber attacks

- some models consider faults as exceptions rather than  

as a part of specification



Distance from Reality
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Distance from Reality in Software

User/Developer
Expectations

Realizations

M1
M2

M2.1

M3



Real World (even if there is a 
standard)

Standard

Developer
Implementation

User 
Modifications

Additionally: updates, 

upgrades, etc.



Specification, Models and Reality

Specification is an ideal thing, 
implementation is a real thing; the 
confusion of the ideal with the real never 
goes unpunished.

Inspired by Goethe: “Love is an ideal thing, marriage is a real 

thing; the confusion of the ideal with the real never goes 

unpunished.”



What to Do? – Define a Goal and Get Closer 
to Empirical Modeling and Reality

After having done analysis, simulation, 
design and prototypic implementation of 
the system get closer by:

Reevaluating the model using data-driven, 
runtime monitoring, feature selection 
methods, fault injection and measurement



On Experiments

 Today’s scientists have substituted mathematics for experiments, and they

wander off through equation after equation, and eventually build a structure

which has no relation to reality.

Nikola Tesla (1856 – 1943)

 There are three principal means of acquiring knowledge... observation of

nature, reflection, and experimentation. Observation collects facts; reflection

combines them; experimentation verifies the result of that combination.

Denis Diderot (1713 – 1784)



Data-Driven, Runtime Monitoring

 Although a plethora of tools exists the question 
remains: What to monitor and how often?

 Usually, an almost arbitrary feature (variable, 
parameter, event) selection

 Diverse formats, interfaces, databases, data 
quality and capabilities

 Flood of data (some tools or companies generate 
or process tens of GB‘s, TB‘s or even PB‘s per day)



Proactive Fault Management (PFM)

 PFM is an umbrella term for techniques 
such as monitoring, diagnosis, prediction, 
recovery and preventive maintenance

 Don‘t wait for a failure, act in advance

 .

Feature 
Selection

Monitoring

Failure

Prediction

(Hopefully)
Dependability
Enhancement

Evaluation
Mitigation/
Adaptation



How to Get There (Off-Line Loop)?

Log 
Files

Time
Series

System
Observation

Probabilistic
Wrapper

Forward
Selection

Feature
Selection

Universal Basis 
Functions

Support Vector
Machines

Model
Estimation

Prediction

Sensitivity
Analysis

Model
Application

Offline System 
Adaptation

Mitigation /
Actuation



Proactive Management Model

UP

(b)

toverhead

latency
lead time

UP

DOWN

MTTRMTTF

(a)

t

UP

(c)

toverhead MTTRp

DOWN

DOWN

Reactive

Failure 

Prevention

Repair-Time

Minimization

P
re

ci
s
io

n

Recall

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Threshold 1 

Threshold 2 

Ideal Case



To Predict or Not to Predict?

 Steady-state availability
𝐴𝑃 =

𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹+𝑀𝑇𝑇𝑅−𝑅∗(𝑟𝑒𝑤𝑎𝑟𝑑−
1−𝑃

𝑃
∗𝑝𝑒𝑛𝑎𝑙𝑡𝑦)

 Breakeven point
𝑃 ≥

𝑝𝑒𝑛𝑎𝑙𝑡𝑦

𝑝𝑒𝑛𝑎𝑙𝑡𝑦+𝑟𝑒𝑤𝑎𝑟𝑑

 A-score
𝐴𝑠𝑐𝑜𝑟𝑒 = 𝑅 ∗ 𝑟𝑒𝑤𝑎𝑟𝑑 −

1−𝑃

𝑃
∗ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦

  Optimization Metric 

   A-score F1-measure High Recall 

r 

Availability 0.998890 0.998890 0.998890 
Downtime per year [h] 9.72 9.72 9.72 

fp
 

Availability 0.999483 0.999461 0.998506 
Downtime per year [h] 4.52 4.72 13.09 

Precision 0.5598 0.6856 0.2710 

Recall 0.7607 0.6800 0.9000 

rt
m

 

Availability 0.998988 0.998987 0.998833 
Downtime per year [h] 8.86 8.88 10.22 

Precision 0.7208 0.6856 0.2710 

Recall 0.6536 0.6800 0.9000 

 

I. Kaitović, and M. Malek, "Optimizing Failure Prediction to Maximize Availability", IEEE ICAC 2016, 

Proc. of International Conference on Autonomic Computing , Würzburg, Germany, July 2016



Data-Driven Approach
- Two Case Studies

We have applied data-driven approach to:

 Failure prediction in servers in telephone 
networks

 Early detection of malware in smartphones



Our Failure Prediction Philosophy 

 Faults, errors and failures are common events so 
let us treat them as part of the system behavior
and learn how to cope with them

 Attractive panacea:

Proactive Fault Management (PFM)



Predictor Design Phases



Two Types of Input Data

 There are two types of system 
measurements

• periodic, numerical

• event-based, categorical

 Examples for periodic data

• system- / CPU load

• memory usage

 Examples for event-based data:

• interrupts

• threshold violations

• error events data window
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Three Models

 White Box (Nonlinearity Detection)

• Lots of knowledge about a system is required

• Root-cause analysis directly from the model

 Black Box (Universal Basis Functions)

• Almost no assumptions about system are required

• Root-cause analysis are limited

 Grey Box (Hidden Markov Model)

• Some assumptions about system

• Root-cause analysis more powerful



Method 1: Detection of Nonlinearities

 Basic assumption: 
Well-designed systems have 
variables which increase linearly 
with the system load

 Adaptive selection of significant 
variables

 Monitoring the linearity of 
selected variables

 Failure Prediction:
Detection of variables that move 
outside their tolerance zone
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Method 2: Universal Basis Functions

 Function approximation:

Failure probability as function 

of system variables

 Selection of indicative 

variables by means of 

variable selection

 Universal Basis Functions:

• Linear combination of 

nonlinear kernel functions

• Training with evolutionary 

algorithm

 Failure Prediction:

Evaluation of kernel functions
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Algorithm‘s Details 



Method 3: Hidden Semi-Markov Model

 Statistical learning from 

previous failure occurrences

 Pattern recognition using 

Hidden semi-Markov 

models

 Two model instances:

• Failure sequences

• Non-failure sequences

 Failure prediction: 

Bayesian classification 

based on sequence 

likelihoods

Non-Failure Sequence HSMM Failure Sequence HSMM

B C A
time

Classification

Failure Prediction

sequence likelihood sequence likelihood

td

data window

time
C A BC

error events

?

present time

prediction



Distributed and component based system

• 1.5+ million lines of code

• 200+ components

• 1100+ variables can be measured

• handles value added services in GSM/GPRS 
networks (e.g. billing, SMS, pre-paid services)

• 400-10,000 service requests per minute

• Two nodes (up to eight)

 Measure availability and predict failures 

Case Study 1 (with Günther Hoffmann):
A Commercial Telecommunication System



 Availability

• Ac(Δt) = 1- (nf / nc)

• Ac(Δt) < 0.9999 

 Interval: 
Δt = 5 minutes
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Lessons Learned from the Case Study 1

 The power of predictive analytics is potentially immense 

(e.g., the potential to significantly improve system 

availability/survivability by an order of magnitude or more)

 The choice of models is not as significant as the choice of 
variables

 Prediction methods should be tested and applied across 

disciplines interchangeably 

 Taming uncertainty, time and complexity will remain the 

key challenge



Case Study II: Early detection of malware
(with Jelena Milesovic and Alberto Ferrante)

 Early detection of malware by observing CPU and 
memory features

 Dynamic detection on the phone



Motivation/ Why Mobile?

 Mobile devices contain 
more private (sensitive) 
data than PCs/tablets 
ever will

 Mobile apps represent 
more than a half of 
Internet use today [1]

 Over five billion Android 
devices have been sold 

since 2009[2]

[1] Lookout blog https://blog.lookout.com/blog/2016/09/29/chamber-of-commerce-mobile-security/

[2] Statistics and facts about Android https://www.statista.com/topics/876/android/

https://blog.lookout.com/blog/2016/09/29/chamber-of-commerce-mobile-security/
https://www.statista.com/topics/876/android/


Requirements for Mobile Malware Detection

 Mobile malware is similar to PC malware 

• high detection performance methods are 
needed 

• usually requires detection methods of high 
complexity

 The environment is constrained:

• by battery, memory, CPU

• complex detection solutions are impractical



Two Approaches to Malware Detection

Static Detection

 (Mostly) offline
investigation 

 Analysis of static 
features

Dynamic Detection

 Investigation of the 

apps during their 

execution

 Analysis of dynamic 

features



Proposed Architecture

Milosevic, J., Malek, M., and Ferrante A. A Friend or a Foe? Detecting Malware using Memory and CPU Features, SECRYPT 

2016, Lisbon, Portugal, pp. 73-84, July 2016 



Discrimination between Diverse Malicious Behavior 

 Discriminate, at runtime, between different 

malware families

Milosevic J., Ferrante A., Malek M., Trojan Families Identification Using Dynamic Features and Low Complexity Classifiers, The 

24th EICAR Annual Conference on Trustworthiness in IT Security Products EICAR-2016, Nuremberg, Germany 



Frequency of occurrence of features among top 5



Frequency of occurrence of features among top 15



Experimental Setup: Dataset

Benign (950 applications) 

 Downloaded from Google 
Play Store 

 Belonging to different 
categories (education, 
entertainment, games, 
lifestyle, etc.)

 Analyzed with Virus Total to 
confirm that malware is not 
present

Malicious (1120 
applications)

 Different range of behavior 

covered  (installation 

methods, activation 

mechanisms, malicious 

payloads)

 Samples taken from 

Malware Genome Project 

and Drebin dataset



Execution Environment 

 Run each application for ten minutes on Android 
Emulator 

 Trigger different events of apps using Monkey 
runner

 Record applications behavior 
• Usage of memory, CPU, network resources and 

system calls

 Monitor system parameters every two seconds

 Reinitialize operating system (Android 4.0)



Extracted Features Related to

 Memory (48 features)
 Virtual, native, Dalvik, Cursor, Android shared, memory-

mapped native code,  memory-mapped fonts, memory-
mapped Dalvik code

 CPU usage (5 features)
 Total, user, kernel

 Network statistics
 Transport and Internet layer (number of 

packets, packets size, network load, etc.)

 System calls  
 System calls and statistics on system calls



Feature Selection 

 In order to identify the most indicative features, we 

have used: 
• Principal Component Analysis
• Correlation Attribute Evaluation
• Correlation Feature Subset Evaluation
• Gain Ratio Attribute Evaluator
• Information Gain Attribute Evaluator
• OneR Feature Evaluator

 The Weka tool implementation of the methods used 
[Hall et al]

Hall et al, The WEKA Data Mining Software: An Update, ACM SIGKDD Explorations Newsletter 2009



Results

 Identification of the most indicative features for efficient 
and effective malware detection 

 Record-level detection 
 Application-level detection 
 Discrimination between diverse malicious behavior 
 Detection of malicious sub-traces

Milosevic et al, What Does the Memory Say? Towards The Most Indicative Features for Efficient Malware

Detection, The 13th Annual IEEE Consumer Communications and Networking Conference, Las Vegas,

USA, January 2016

Milosevic et al, A Friend or a Foe? Detecting Malware Using Memory and CPU Features, The 13th

International Conference on Security and Cryptography, Lisbon, Portugal, July 2016



Detection Performance of Record-level Classification

Performance of classifiers when different number 

of features are considered

The F-measure of the system is defined as the weighted harmonic mean of its precision and recall: F = 2PR/(P + R)



Detection Performance with Previously Unseen Applications

Malware detected, on the average, after 85 execution records (2mins and 45s)

Application-level Detection Performance

Features Metric Window 
Length,

Threshold, 
Checks

Malware
Detected  

%

False 
Positives 

%

F-measure

Initial
(53)

Highest F-
measure

Best malware 
detection

Lowest false 
positives 

3, 80, 11

5, 60, 9

15, 95, 5

92.1

89.9

65.2

24.5

23.4

10.6

0.84

0.84

0.74

Optimized
(7)

Highest F-
measure

Best malware 
detection

Lowest false 
positives

5, 85, 15

10, 60, 7

20, 9, 5

85.5

89.9

59.5

17.2

24.7

10.7

0.85

0.83

0.70



Main Points

 We propose an approach to identification of behavioral 
signatures for different Trojan families and their most 
appropriate detectors 

 Choice of features is the key.
By observing only a limited number of features per Trojan 

family (from 3 to 13 features) and by using a detection 
algorithms of low complexity in the number of features (Naive 
Bayes, Logistic Regression or Support Vector Machines), 
execution records belonging to Trojans can be identified with a 
precision of up to 99.8% 

 The proposed method is suitable for efficient and effective 
run-time usage on resource-constrained devices



Conclusions

 Data-driven, runtime monitoring and continuous model 
adjustment must become a standard practice and will play 
increasingly important role due to system dynamics and 
complexity. It will also result in better designs and more agile and 
robust systems.

 The focus on specific properties, separation of concerns, accurate 
experiments and measurement, fault injection, proactive control 
and management and getting closer to reality will result in 
effective methods to improve system performance and 
dependability.

 Taming complexity, uncertainty and time will remain a key 
challenge.

 Next frontier: constructing the future


