
Predictive Analytics:
a Shortcut to Dependable Computing

Geneva

September 4, 2017

Miroslaw Malek

SERENE Workshop 2017

Technology is changing all the time

Pan Am Airlines

transferring

5 MB hard drive in 1956

So are

the methods

The Age of Computricity
- An ever more Complex World

Sensors

Networks

Actuators

Mobile Devices

E-motion

Data Centers/Clouds/GridsPeople/Stakeholders

The Age of Computricity
- An ever more Complex World

Sensors

Networks

Actuators

Mobile Devices

E-motion

10B per year

Data Centers/Clouds/GridsPeople/Stakeholders

The Age of Computricity
- An ever more Complex World

Sensors

Networks

Actuators

Mobile Devices

E-motion

10B per year

150-300M per
year

Data Centers/Clouds/GridsPeople/Stakeholders

The Age of Computricity
- An ever more Complex World

Sensors

Networks

Actuators

Mobile Devices

E-motion

10B per year

150-300M per
year

Data Centers/Clouds/GridsPeople/Stakeholders

7B

(80M per year)

Internet of Things - the Impact

 Over 20 billion IoT devices will be connected by
2020 (Gartner), some talk about over 100 B by
2025

 Economic impact of IoT technology:

2.7 to 6.2 trillion dollars turnover by 2025

(McKinsey & Co.)

 Many of IoT devices have to operate in
environments characterized by uncertainty,
insecurity (both physical and cyber), and
instability

The Three Tyrants* Challenge

• Complexity

 Growth in practice can hardly be stopped
 Striving for new functional features
 Striving for improved properties (e.g. higher

performance, higher reliability)
 Striving for having everybody and everything on the net
 Open systems, adding environment, including people
 BIG DATA, data analytics

• Time
 Time can neither be stopped nor regained
 Disparity between physical and logical time

• Uncertainty
- Can be controlled to a limited extent, we have “to cope”

with it
- New failure modes, new environmental conditions, new

attacks
*Inspired by a quote from Johann Gottfried von Herder (1744-1803): Die zwei größten Tyrannen der Erde: der Zufall und die Zeit

“Two biggest tyrants on Earth are: the chance and the time.”

Paradigm Shift

From analyzing the past and the present to predicting and
constructing the future

The way to go:

predictive analytics

Change Your Mindset

Don‘t wait for a failure,
anticipate and avoid it,

or at least minimize the potential damage

Five-Minute Prediction

www.naturalsciences.be

www.ortixdesign.com

for computers is like … FIVE-DAY prediction for tsunami

What Is Predictive Analytics?

 Predictive analytics applies a set of models,
methods/algorithms and classifiers that use
historical and current data to forecast future
activity, behavior and trends.

 Predictive analytics involves creating predictive
models and applying stochastic analysis, function
approximation, machine learning and other
methods to determine the likelihood of a particular
event taking place.

 In our field, it is used in proactive fault
management, failure prediction and predictive
maintenance

Models and their Interpretation

The sciences do not try to explain, they hardly even try

to interpret, they mainly make models. By a model is
meant a mathematical construct which, with the
addition of certain verbal interpretations, describes
observed phenomena. The justification of such a
mathematical construct is solely and precisely that it is
expected to work.

John von Neumann (1903 - 1957)

The Three Tyrants and the Models

• Complexity
 many models are useless

 most models do not scale

• Time
 most models do not consider time

• Uncertainty

- most models consider neither faults nor cyber attacks

- some models consider faults as exceptions rather than

as a part of specification

Distance from Reality

M5

M1

M2

M3

M4

M4.1

M4.2

Reality

Distance from Reality in Software

User/Developer
Expectations

Realizations

M1
M2

M2.1

M3

Real World (even if there is a
standard)

Standard

Developer
Implementation

User
Modifications

Additionally: updates,

upgrades, etc.

Specification, Models and Reality

Specification is an ideal thing,
implementation is a real thing; the
confusion of the ideal with the real never
goes unpunished.

Inspired by Goethe: “Love is an ideal thing, marriage is a real

thing; the confusion of the ideal with the real never goes

unpunished.”

What to Do? – Define a Goal and Get Closer
to Empirical Modeling and Reality

After having done analysis, simulation,
design and prototypic implementation of
the system get closer by:

Reevaluating the model using data-driven,
runtime monitoring, feature selection
methods, fault injection and measurement

On Experiments

 Today’s scientists have substituted mathematics for experiments, and they

wander off through equation after equation, and eventually build a structure

which has no relation to reality.

Nikola Tesla (1856 – 1943)

 There are three principal means of acquiring knowledge... observation of

nature, reflection, and experimentation. Observation collects facts; reflection

combines them; experimentation verifies the result of that combination.

Denis Diderot (1713 – 1784)

Data-Driven, Runtime Monitoring

 Although a plethora of tools exists the question
remains: What to monitor and how often?

 Usually, an almost arbitrary feature (variable,
parameter, event) selection

 Diverse formats, interfaces, databases, data
quality and capabilities

 Flood of data (some tools or companies generate
or process tens of GB‘s, TB‘s or even PB‘s per day)

Proactive Fault Management (PFM)

 PFM is an umbrella term for techniques
such as monitoring, diagnosis, prediction,
recovery and preventive maintenance

 Don‘t wait for a failure, act in advance

 .

Feature
Selection

Monitoring

Failure

Prediction

(Hopefully)
Dependability
Enhancement

Evaluation
Mitigation/
Adaptation

How to Get There (Off-Line Loop)?

Log
Files

Time
Series

System
Observation

Probabilistic
Wrapper

Forward
Selection

Feature
Selection

Universal Basis
Functions

Support Vector
Machines

Model
Estimation

Prediction

Sensitivity
Analysis

Model
Application

Offline System
Adaptation

Mitigation /
Actuation

Proactive Management Model

UP

(b)

toverhead

latency
lead time

UP

DOWN

MTTRMTTF

(a)

t

UP

(c)

toverhead MTTRp

DOWN

DOWN

Reactive

Failure

Prevention

Repair-Time

Minimization

P
re

ci
s
io

n

Recall

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Threshold 1

Threshold 2

Ideal Case

To Predict or Not to Predict?

 Steady-state availability
𝐴𝑃 =

𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹+𝑀𝑇𝑇𝑅−𝑅∗(𝑟𝑒𝑤𝑎𝑟𝑑−
1−𝑃

𝑃
∗𝑝𝑒𝑛𝑎𝑙𝑡𝑦)

 Breakeven point
𝑃 ≥

𝑝𝑒𝑛𝑎𝑙𝑡𝑦

𝑝𝑒𝑛𝑎𝑙𝑡𝑦+𝑟𝑒𝑤𝑎𝑟𝑑

 A-score
𝐴𝑠𝑐𝑜𝑟𝑒 = 𝑅 ∗ 𝑟𝑒𝑤𝑎𝑟𝑑 −

1−𝑃

𝑃
∗ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦

 Optimization Metric

 A-score F1-measure High Recall

r

Availability 0.998890 0.998890 0.998890
Downtime per year [h] 9.72 9.72 9.72

fp

Availability 0.999483 0.999461 0.998506
Downtime per year [h] 4.52 4.72 13.09

Precision 0.5598 0.6856 0.2710

Recall 0.7607 0.6800 0.9000

rt
m

Availability 0.998988 0.998987 0.998833
Downtime per year [h] 8.86 8.88 10.22

Precision 0.7208 0.6856 0.2710

Recall 0.6536 0.6800 0.9000

I. Kaitović, and M. Malek, "Optimizing Failure Prediction to Maximize Availability", IEEE ICAC 2016,

Proc. of International Conference on Autonomic Computing , Würzburg, Germany, July 2016

Data-Driven Approach
- Two Case Studies

We have applied data-driven approach to:

 Failure prediction in servers in telephone
networks

 Early detection of malware in smartphones

Our Failure Prediction Philosophy

 Faults, errors and failures are common events so
let us treat them as part of the system behavior
and learn how to cope with them

 Attractive panacea:

Proactive Fault Management (PFM)

Predictor Design Phases

Two Types of Input Data

 There are two types of system
measurements

• periodic, numerical

• event-based, categorical

 Examples for periodic data

• system- / CPU load

• memory usage

 Examples for event-based data:

• interrupts

• threshold violations

• error events data window

t
C A BC

error events

failure?

Present
time

prediction

t

t

In
p

u
t

F
(t

)

AUC out-of-sample

v
a

ri
a

b
le

 s
e

le
c

ti
o

n
 t

e
c

h
n

iq
u

e

 Expert Selected

Backward Elimination: Class labels

Backward Elimination: Time Series

Forward selection: Class labels

Forward selection: Time Series

PWA: Class labels

PWA: Time Series

0.50 0.55 0.60 0.65 0.70 0.75

Variable Selection

 Benchmarked four
techniques
• Forward selection

• Backward elimination

• Expert selected

• PWA (Prob. Wrapper)

 Variables
• alloc

• sema/s

 PWA performs best
on time series and
class label data

Three Models

 White Box (Nonlinearity Detection)

• Lots of knowledge about a system is required

• Root-cause analysis directly from the model

 Black Box (Universal Basis Functions)

• Almost no assumptions about system are required

• Root-cause analysis are limited

 Grey Box (Hidden Markov Model)

• Some assumptions about system

• Root-cause analysis more powerful

Method 1: Detection of Nonlinearities

 Basic assumption:
Well-designed systems have
variables which increase linearly
with the system load

 Adaptive selection of significant
variables

 Monitoring the linearity of
selected variables

 Failure Prediction:
Detection of variables that move
outside their tolerance zone

application

variable

value

System load

tolerance zone

operating system

communication

layer

h
d

d
 s

p
a

c
e

B

G

C

D

E F

A

hardware

drivers

middleware

c
p

u

m
e

m
o

ry

i/
o

n
e

tw
o

rk

d
n

s

Selected variables

Method 2: Universal Basis Functions

 Function approximation:

Failure probability as function

of system variables

 Selection of indicative

variables by means of

variable selection

 Universal Basis Functions:

• Linear combination of

nonlinear kernel functions

• Training with evolutionary

algorithm

 Failure Prediction:

Evaluation of kernel functions

t

t

t

s
e

m
a
/s

a
llo

c
F

(t
)

Algorithm‘s Details

Method 3: Hidden Semi-Markov Model

 Statistical learning from

previous failure occurrences

 Pattern recognition using

Hidden semi-Markov

models

 Two model instances:

• Failure sequences

• Non-failure sequences

 Failure prediction:

Bayesian classification

based on sequence

likelihoods

Non-Failure Sequence HSMM Failure Sequence HSMM

B C A
time

Classification

Failure Prediction

sequence likelihood sequence likelihood

td

data window

time
C A BC

error events

?

present time

prediction

Distributed and component based system

• 1.5+ million lines of code

• 200+ components

• 1100+ variables can be measured

• handles value added services in GSM/GPRS
networks (e.g. billing, SMS, pre-paid services)

• 400-10,000 service requests per minute

• Two nodes (up to eight)

 Measure availability and predict failures

Case Study 1 (with Günther Hoffmann):
A Commercial Telecommunication System

 Availability

• Ac(Δt) = 1- (nf / nc)

• Ac(Δt) < 0.9999

 Interval:
Δt = 5 minutes

0 2000 4000 6000

0
.9

9
9

0
0

.9
9

9
2

0
.9

9
9

4
0

.9
9

9
6

0
.9

9
9

8
1

.0
0

0
0

time [min]

a
v
a

il
a

b
il
it
y

Plotting Availability

Lessons Learned from the Case Study 1

 The power of predictive analytics is potentially immense

(e.g., the potential to significantly improve system

availability/survivability by an order of magnitude or more)

 The choice of models is not as significant as the choice of
variables

 Prediction methods should be tested and applied across

disciplines interchangeably

 Taming uncertainty, time and complexity will remain the

key challenge

Case Study II: Early detection of malware
(with Jelena Milesovic and Alberto Ferrante)

 Early detection of malware by observing CPU and
memory features

 Dynamic detection on the phone

Motivation/ Why Mobile?

 Mobile devices contain
more private (sensitive)
data than PCs/tablets
ever will

 Mobile apps represent
more than a half of
Internet use today [1]

 Over five billion Android
devices have been sold

since 2009[2]

[1] Lookout blog https://blog.lookout.com/blog/2016/09/29/chamber-of-commerce-mobile-security/

[2] Statistics and facts about Android https://www.statista.com/topics/876/android/

https://blog.lookout.com/blog/2016/09/29/chamber-of-commerce-mobile-security/
https://www.statista.com/topics/876/android/

Requirements for Mobile Malware Detection

 Mobile malware is similar to PC malware

• high detection performance methods are
needed

• usually requires detection methods of high
complexity

 The environment is constrained:

• by battery, memory, CPU

• complex detection solutions are impractical

Two Approaches to Malware Detection

Static Detection

 (Mostly) offline
investigation

 Analysis of static
features

Dynamic Detection

 Investigation of the

apps during their

execution

 Analysis of dynamic

features

Proposed Architecture

Milosevic, J., Malek, M., and Ferrante A. A Friend or a Foe? Detecting Malware using Memory and CPU Features, SECRYPT

2016, Lisbon, Portugal, pp. 73-84, July 2016

Discrimination between Diverse Malicious Behavior

 Discriminate, at runtime, between different

malware families

Milosevic J., Ferrante A., Malek M., Trojan Families Identification Using Dynamic Features and Low Complexity Classifiers, The

24th EICAR Annual Conference on Trustworthiness in IT Security Products EICAR-2016, Nuremberg, Germany

Frequency of occurrence of features among top 5

Frequency of occurrence of features among top 15

Experimental Setup: Dataset

Benign (950 applications)

 Downloaded from Google
Play Store

 Belonging to different
categories (education,
entertainment, games,
lifestyle, etc.)

 Analyzed with Virus Total to
confirm that malware is not
present

Malicious (1120
applications)

 Different range of behavior

covered (installation

methods, activation

mechanisms, malicious

payloads)

 Samples taken from

Malware Genome Project

and Drebin dataset

Execution Environment

 Run each application for ten minutes on Android
Emulator

 Trigger different events of apps using Monkey
runner

 Record applications behavior
• Usage of memory, CPU, network resources and

system calls

 Monitor system parameters every two seconds

 Reinitialize operating system (Android 4.0)

Extracted Features Related to

 Memory (48 features)
 Virtual, native, Dalvik, Cursor, Android shared, memory-

mapped native code, memory-mapped fonts, memory-
mapped Dalvik code

 CPU usage (5 features)
 Total, user, kernel

 Network statistics
 Transport and Internet layer (number of

packets, packets size, network load, etc.)

 System calls
 System calls and statistics on system calls

Feature Selection

 In order to identify the most indicative features, we

have used:
• Principal Component Analysis
• Correlation Attribute Evaluation
• Correlation Feature Subset Evaluation
• Gain Ratio Attribute Evaluator
• Information Gain Attribute Evaluator
• OneR Feature Evaluator

 The Weka tool implementation of the methods used
[Hall et al]

Hall et al, The WEKA Data Mining Software: An Update, ACM SIGKDD Explorations Newsletter 2009

Results

 Identification of the most indicative features for efficient
and effective malware detection

 Record-level detection
 Application-level detection
 Discrimination between diverse malicious behavior
 Detection of malicious sub-traces

Milosevic et al, What Does the Memory Say? Towards The Most Indicative Features for Efficient Malware

Detection, The 13th Annual IEEE Consumer Communications and Networking Conference, Las Vegas,

USA, January 2016

Milosevic et al, A Friend or a Foe? Detecting Malware Using Memory and CPU Features, The 13th

International Conference on Security and Cryptography, Lisbon, Portugal, July 2016

Detection Performance of Record-level Classification

Performance of classifiers when different number

of features are considered

The F-measure of the system is defined as the weighted harmonic mean of its precision and recall: F = 2PR/(P + R)

Detection Performance with Previously Unseen Applications

Malware detected, on the average, after 85 execution records (2mins and 45s)

Application-level Detection Performance

Features Metric Window
Length,

Threshold,
Checks

Malware
Detected

%

False
Positives

%

F-measure

Initial
(53)

Highest F-
measure

Best malware
detection

Lowest false
positives

3, 80, 11

5, 60, 9

15, 95, 5

92.1

89.9

65.2

24.5

23.4

10.6

0.84

0.84

0.74

Optimized
(7)

Highest F-
measure

Best malware
detection

Lowest false
positives

5, 85, 15

10, 60, 7

20, 9, 5

85.5

89.9

59.5

17.2

24.7

10.7

0.85

0.83

0.70

Main Points

 We propose an approach to identification of behavioral
signatures for different Trojan families and their most
appropriate detectors

 Choice of features is the key.
By observing only a limited number of features per Trojan

family (from 3 to 13 features) and by using a detection
algorithms of low complexity in the number of features (Naive
Bayes, Logistic Regression or Support Vector Machines),
execution records belonging to Trojans can be identified with a
precision of up to 99.8%

 The proposed method is suitable for efficient and effective
run-time usage on resource-constrained devices

Conclusions

 Data-driven, runtime monitoring and continuous model
adjustment must become a standard practice and will play
increasingly important role due to system dynamics and
complexity. It will also result in better designs and more agile and
robust systems.

 The focus on specific properties, separation of concerns, accurate
experiments and measurement, fault injection, proactive control
and management and getting closer to reality will result in
effective methods to improve system performance and
dependability.

 Taming complexity, uncertainty and time will remain a key
challenge.

 Next frontier: constructing the future

