
	

	

	

Assurances	
 for	
 Self-­‐Adap1ve	
 Systems	

	

SERENE	
 Autumn	
 School	

October	
 2,	
 2013	
 Kiev	

	

	

Danny	
 Weyns,	
 Linnaeus	
 University	
 Sweden	

danny.weyns@lnu.se	
 	

h8p://homepage.lnu.se/staff/daweaa/index.htm	
 	

Your	
 tutor	
 this	
 aBernoon	

2	

	

Linnaeus	
 University	
 Växjö	
 campus	
 –	
 Sweden	
 	

Research	
 team	
 focusing	
 on	
 soBware	
 architecture	
 and	
 self-­‐adapMve	
 systems	

Växjö, Sweden - Google Maps https://maps.google.com/maps?f=d&source=s_d&saddr=Växjö...

1 of 1 10/2/13 12:30 PM

MoMvaMon	

3	

	

• Engineering	
 contemporary	
 soBware	
 systems	
 is	

complex	
 due	
 to	
 uncertainMes	
 at	
 design	
 Mme	
 	

•  Changing	
 availability	
 	
 of	
 resources	
 	

•  Faults	
 that	
 are	
 difficult	
 to	
 predict	
 	

•  Changing	
 or	
 new	
 user	
 goals	

• How	
 to	
 engineer	
 such	
 systems	
 and	
 guarantee	

system	
 goals	
 regarding	
 of	
 the	
 uncertainMes?	
 	
 	

	

Promise	
 of	
 self-­‐adapMve	
 systems*	

	

	

Self-­‐adapMve	
 systems	
 are	
 able	
 to	
 adjust	
 their	
 behavior	
 in	

response	
 to	
 their	
 percepMon	
 of	
 the	
 environment	
 and	
 the	

system	
 itself	

	

to	
 become	
 more	
 resilient,	
 dependable,	
 robust,	
 energy-­‐
efficient	
 […]	

	

	

*B.	
 Cheng	
 et	
 al.,	
 SoBware	
 Engineering	
 for	
 Self-­‐AdapMve	
 Systems:	
 A	
 Research	
 Roadmap,	
 Lecture	
 Notes	
 in	

Computer	
 Science,	
 vol.	
 5525,	
 2009	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Promise	
 of	
 formal	
 approaches	
 for	

self-­‐adapMve	
 systems*	

	

	

Formal	
 methods	
 offer	
 a	
 means	
 to	
 	

provide	
 evidence	
 that	
 the	
 system	
 requirements	
 are	

saMsfied	
 during	
 operaMon	

regarding	
 the	
 uncertainty	
 of	
 changes	
 that	
 may	
 affect	
 the	

system,	
 its	
 environment	
 or	
 its	
 goals	

	

	

*SoBware	
 Engineering	
 for	
 Self-­‐AdapMve	
 Systems:	
 Assurances	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 www.dagstuhl.de/de/programm/kalender/semhp/?semnr=13511	
 	

	

Goals	
 of	
 this	
 tutorial	

•  Understand	
 the	
 noMon	
 of	
 self-­‐adaptaMon	
 	

•  Get	
 familiar	
 with	
 references	
 approaches	
 for	

architecture-­‐based	
 self-­‐adaptaMon	

•  Get	
 familiar	
 with	
 state	
 of	
 the	
 art	
 in	
 formal	

methods	
 for	
 self-­‐adapMve	
 systems	
 	

•  Understand	
 the	
 challenges	
 in	
 formal	
 methods	

at	
 runMme	
 for	
 self-­‐adapMve	
 systems	

Overview	

•  Architecture-­‐based	
 self-­‐adaptaMon	
 vs.	
 control-­‐
based	
 self-­‐adaptaMon	

•  Reference	
 approaches	
 for	
 architecture-­‐based	

self-­‐adaptaMon	

•  Formal	
 methods	
 for	
 self-­‐adapMve	
 systems	

•  AcMve	
 formal	
 methods	
 for	
 self-­‐adaptaMon	

•  Wrap	
 up	
 	

Self-­‐adaptaMon	

	

Architecture-­‐based	
 self-­‐adaptaMon	

	

	

	

Control-­‐based	
 self-­‐adaptaMon	

	

Target	
 system	
 Controller	

disturbance	
 input	

reference	

input	
 output	

Transducer	

Managed	
 system	

Environment	

Managing	
 system	

effect	

adapt	

monitor	

control	

Basic	
 model	
 control-­‐based	
 self-­‐
adaptaMon	

9	

Target	
 system	
 Controller	

transduced	
 output	

disturbance	
 input	

reference	
 input	
 measured	
 output	

Transducer	

control	
 input	

	

Discrete	
)me	
 dynamic	
 system	
 	

	
 	
 	
 x(k+1)	
 =	
 f(x(k),u(k),dx(k))	

	
 	
 	
 	
 	
 	
 	
 x:	
 state;	
 u:	
 input;	
 dx:	
 state	
 disturbances	
 	
 	

	
 	
 	
 y(k)	
 =	
 g(x(k),u(k),dy(k))	
 	

	
 	
 	
 	
 	
 	
 	
 y:	
 output;	
 u:	
 input;	
 dy:	
 output	
 disturbances	

Control-­‐based	
 	
 	
 	

self-­‐adaptaMon	

10	

Classic controllers
(Abdelzaher et al. 2003)	

Decentralized	
 control	
 	

(X.	
 Wang	
 et	
 al.,	
 2007;	
 R.	
 Wang	
 et	
 al	
 2012)	

Nested	
 and	
 layered	
 architectures	

(Zhu	
 et	
 al,	
 2006;	
 Kusic	
 et	
 al.	
 2009)	

CPU capacity) allocated to a class [16] or the fraction of net-
work link bandwidth allocated to a flow [17].

This section discussed the natural existence of actuators
in computing systems, which makes it possible to imple-
ment the “valves” that appear in Figure 1(b). Another impor-
tant cornerstone of applying feedback control to computing
systems is the existence of a natural translation from com-
mon QoS assurance problems into those of feedback con-
trol. This topic is covered in the next section.

QoS Mapping
A cornerstone of a control-theoretic paradigm for QoS guar-
antees in software systems lies in the ability to convert com-
mon resource management and software performance
assurance problems into feedback control problems. One
can think of each QoS control problem as having a corre-
sponding control-loop instantiation that describes how this
particular QoS control problem is solved using feedback
control. We call such an instantiation a control-loop tem-
plate. Here we describe control-loop templates for the main

QoS control problems such as absolute convergence
guarantees, performance isolation, statistical multiplexing,
prioritization, relative differentiated service guarantees,
and optimization guarantees. The fundamental building
block in these templates is one that implements the basic
(absolute) convergence guarantee. Interconnecting such
blocks can lead to formulating more complex guarantees
such as relative guarantees, prioritization, and optimization
as feedback control problems.

The Absolute Convergence Guarantee
Since it is impossible to achieve absolute guarantees in a
system where load and resources are not known a priori, we
define the absolute guarantee problem as one of conver-
gence to a specified performance. The statement of the
problem is to ensure that a performance metric, R, i) con-
verges within a specified exponentially decaying envelope
to a fixed value, Rdesired, and that ii) the maximum deviation
R Rdesired − is bounded at all times, as shown in Figure 2(a).

80 IEEE Control Systems Magazine June 2003

R

Rdes.

Specified Maximum Deviation

Actual Performance, R

Time

Specified Decay Envelope

(a)

Approximate
System Model

Performance
Error Correction

Performance
Set Point

Controller
Actuator

(Resource Allocator)

Resource
Allocation

Software
System

Actual
Performance

Performance
SensorMeasured

Performance

(b)

Approximate
System Model

Approximate
System Model

First-Class
Allocation

Controller

Controller

Unused
Capacity

Unused
Capacity

Correction

Admitted
First-Class Clients

Admitted
ClientsActuator

(Resource Allocator)

Actuator
(Resource Allocator)

Software
System

Software
System

Class
Resource
Consumption

Resource
Consumption

Resource
Consumption

Performance
Sensor

Performance
Sensor

Performance
Sensor

Performance
Sensor

Measured
Consumption of First-Class Clients

Measured
Consumption of First-Class Clients

Measured
Consumption of Second-Class Clients

Measured
Consumption of Second-Class Clients

Leftover
Capacity

Total
Leftover
Capacity

Leftover
Capacity

Unused
Capacity

Correction

Admitted
Second-Class Clients

Controller

Controller

Actuator
(Resource Allocator)

Actuator
(Resource Allocator)

Software
System

Software
System

Class
Resource
Consumption

Virtual-Estate
Allocation

mi

mb

Best-Effort
Allocation

Admitted Best-Effort
Clients

(c) (d)

Figure 2. Control loop templates: (a) the absolute guarantee specification, (b) basic loop, (c) prioritization, and (d) excess capacity
management.

!"#$%%&%'%()*%&($&*!+,(!+,&!&-#$./&/$0)#&1.2-)(3&45)%)&/$0)#&
1.2-)(%& "!,& 1)& /#$6+2)2& 1'& %'%()*& 2)%+-,)#%& $#& 2!(!& "),()#&
$/)#!($#%&1!%)2&$,&(5)#*!7&1.2-)(&"$,%(#!+,(%8&$#&2)()#*+,)2&1'&
5+-597)6)7& /$0)#& *!,!-)#%3& :+,!77'8& !& !"#$%&'()&*+",-(
.,$#.''-#&;<=>?&%))@%&($&#)2.")&(5)&!6)#!-)&/$0)#&"$,%.)2&
!"#$%%&!&"$77)"(+$,&$A&*!"5+,)%&1'&"$,%$7+2!(+,-&0$#@7$!2%&!,2&
(.#,+,-& .,.%)2& *!"5+,)%& $AA3& & :+-.#)& B& %.**!#+C)%& (5)%)&
%$7.(+$,%&!,2&+77.%(#!()%&(5)+#&2+6)#%+('3&&

!"#! $%&%'()*(%+'(&,%-./0)1',2.3%,4556'3.
45)& #+"5& 2+6)#%+('& +,& /$0)#& *!,!-)*),(& 2+%".%%)2& !1$6)& "!,&
7)!2& ($& /#$17)*%& +A& !77& (5)& %$7.(+$,%& !#)& 2)/7$')2& !(& (5)& %!*)&
(+*)3&:$#&)D!*/7)8&(5)&E>&!,2&(5)&F=&1$(5&$/)#!()&$,&(5)&%!*)&
@,$1&;G9%(!()?&1.(&A$#&2+AA)#),(&*)(#+"%3&HA&.,"$$#2+,!()28&(5)&E>&
"!,& /$(),(+!77'& $6)#0#+()& (5)& F=& 7)!2+,-& ($& /$0)#& 1.2-)(&
6+$7!(+$,%&!,2&)6),(.!7&(5)#*!7&A!+7$6)#3&I%&!,$(5)#&)D!*/7)8&+,&
(5)& !1%),")& $A& +,A$#*!(+$,& !1$.(& (5)& 7$"!7& /$0)#& "!//)#J%&
!"(+$,%8& (5)& -7$1!7& /$0)#& "!//+,-& !7-$#+(5*& "!,& +,"$##)"(7'&
"$,A7+"(& 0+(5& (5)& 7$"!7& "!//)#& 7)!2+,-& ($& +,"#)!%)2& /)#9%)#6)#&
1.2-)(& 6+$7!(+$,%& $#& #)2.")2& /)#A$#*!,")3& K$(5& !#)& %)#+$.%&
"$##)"(,)%%& +%%.)%3&I%& !& (5+#2& +77.%(#!(+6)&)D!*/7)8& +A& (5)&<=>&
!,2&-#$./&"!//)#%&!#)&.,"$$#2+,!()28&(5)&<=>&"!,&"$,%$7+2!()&
*$#)&"!/!"+('&$,($&!&"$77)"(+$,&$A& %)#6)#%& (5!,&!77$0)2&1'& (5)&
-#$./& /$0)#& 1.2-)(3& H,& !22+(+$,& ($&)D")%%+6)& /)#A$#*!,")&
6+$7!(+$,%& ;+,)AA+"+),"'?8& (5)&<=>& "!,& /$(),(+!77'& #)!"(& ($& (5)&
7$0)#& .(+7+C!(+$,& ;1)"!.%)& $A& /$0)#& "!//+,-?& !,2& /!"@&)6),&
*$#)&0$#@7$!2%&$,($& (5)&%)#6)#8& 7)!2+,-&($&!&6+"+$.%&"'"7)&!,2&
%'%()*&+,%(!1+7+('3&

I%& 0)& "!,& %))8& 7!"@& $A& "$$#2+,!(+$,& "!,& 7)!2& ($& /#$17)*%& $A&
"$##)"(,)%%8& %(!1+7+('8& !,2&)AA+"+),"'3& L6)#!778& (5)& +%%.)%&
*$(+6!(+,-&(5)&,))2&A$#&"$$#2+,!(+$,&"!,&1)&"7!%%+A+)2&!%&A$77$0%&
M&;B?&$6)#7!/&+,&$1N)"(+6)&A.,"(+$,%&M&/)!@&6)#%.%&!6)#!-)8&7$"!7&
6%3& -7$1!78&)("38& ;O?& $6)#7!/& +,& !"(.!($#%8& ;P?& 2+AA)#),(& (+*)&
"$,%(!,(%8& !,2& ;Q?& 2+AA)#),(& /#$17)*& A$#*.7!(+$,%3& 45)%)& !#)&
%.**!#+C)2& +,& :+-.#)& B3& I*$,-& (5)%)& +%%.)%8& $6)#7!/& +,&

!"(.!($#%& +%& (5)& *$%(& +,%+2+$.%& %+,")& +(& "!,& /$%)& !& %)#+$.%&
/#$17)*&$A&"$##)"(,)%%&;!%&+,&(5)&A+#%(&(0$&)D!*/7)%&!1$6)?3&&&

R$0)6)#8&-+6),&(5)&-#$0+,-&"5!77),-)&A#$*&/$0)#&!,2&"$$7+,-8&
A.(.#)& 2!(!& "),()#%& 0+77& 7+@)7'& 2)/7$'& *.7(+/7)& /$0)#&
!,!-)),(&%$7.(+$,%&!(&(5)&%!*)&(+*)8&!,2&A)2)#!(+$,B&$A&(5)%)&
%$7.(+$,%&+%&2)%+#!17)3&H(&(5)#)A$#)&1)"$*)%&+*/$#(!,(&($&"$,%+2)#&
!& %$7.(+$,& (5!(& "$$#2+,!()%&2+AA)#),(&/$0)#& %$7.(+$,%&!"#$%%& (5)&
6!#+$.%&!D)%&$A&(5)&(!D$,$*'3&40$&@)'&%)(%&$A&S.)%(+$,%&)D+%(&+,&
(5)& "$,()D(& $A& %."5& !,& !#"5+()"(.#)3& 45)& A+#%(& /)#(!+,%& ($& (5)&
2)%+-,& $A& %."5& !& "$$#2+,!()2& !#"5+()"(.#)3& R$0& %5$.72&
+,2+6+2.!7& "$,(#$77)#%& +,()#!"(& 0+(5&)!"5& $(5)#& ($&),%.#)&
"$##)"(,)%%8& %(!1+7+('8& !,2&)AA+"+),"'T& H,&/!#(+".7!#8& 5$0&2$&0)&
A)2)#!()& (5)& +,2+6+2.!7& "$,(#$77)#%& ($& 1)& !0!#)& $A& $,)& !,$(5)#8&
1.(&0+(5$.(& #)S.+#+,-&-7$1!7&@,$07)2-)&$A& !77& (5)&/#$/)#(+)%&!(&
)!"5& $A& (5)& +,2+6+2.!7& "$,(#$77)#%T& :.#(5)#*$#)8& -+6),& (5)&
2',!*+%*&+,&A.(.#)&),()#/#+%)&),6+#$,*),(%8&5$0&2$&0)&2)%+-,&
(5)&%$7.(+$,&($&#)%/$,2&($&"5!,-)%&+,&(5)&,.*1)#&!,2&,!(.#)&$A&
"$,(#$77)#%& /!#(+"+/!(+,-& +,& (5)& $6)#!77& !#"5+()"(.#)8& !,2& ($&
"5!,-)%&+,&(5)&,!(.#)&$A&%'%()*%&!,2&!//7+"!(+$,%&2)/7$')2T&

45)&%)"$,2&%)(&$A&S.)%(+$,%&/)#(!+,%&($&(5)&+*/7+"!(+$,%&$A&%."5&
!& .,+A+)2& %$7.(+$,& $,& (5)& 2)%+-,& !,2& 2)/7$'*),(& $A& +,2+6+2.!7&
/$0)#& *!,!-)*),(& %$7.(+$,%3& I#)& !77& %$7.(+$,%&)S.!77'&
+*/$#(!,(T& U$)%& (5)& "$$#2+,!()2& !#"5+()"(.#)& !77$0& A$#&
A.,"(+$,!7+('& $A& $,)& "$,(#$77)#& ($& 1)& %+*/7+A+)28& $#&)6),&
%.1%.*)2& +,& !,$(5)#& "$,(#$77)#8& ($&),!17)& !,& $6)#!77& %+*/7)#&
2)%+-,T&U$&(5)&/$7+"+)%&!,2&*)"5!,+%*%&!(&(5)&+,2+6+2.!7&7)6)7&
,))2& ($& 1)& #)6+%+()2& +,& (5)& "$,()D(& $A& (5)+#& +,()#!"(+$,%& 0+(5&
$(5)#& "$,(#$77)#%T& R$0& %),%+(+6)& !#)& (5)& !,%0)#%& ($& (5)& !1$6)&
&& &&&&&&&&&&&&&&&&&&&&&&&&&
B& LA& "$.#%)8& !& "),(#!7+C)2& %$7.(+$,& (5!(& +*/7)*),(%& !77& +,2+6+2.!7&
%$7.(+$,%&!(&$,)&/7!")&0$.72&%$76)&(5)&"5!77),-)%&2+%".%%)28&1.(&-+6),&
(5)&1.%+,)%%&!%/)"(%&!#$.,2&2+AA)#),(&%$7.(+$,%&A#$*&*.7(+/7)&6),2$#%&
!,2& (5)& ()"5,+"!7& !%/)"(%& !#$.,2& +%$7!(+$,8& !1%(#!"(+$,8& !,2&!"")%%& ($&
+,A$#*!(+$,8&0)&2$,J(&1)7+)6)&(5+%&!//#$!"5&($&1)&/#!-*!(+"3&

&
7854,'.!-.9.:)),;8<&%';.=)1',.>&<&5'>'<%.&,:+8%':%4,'"./%#(0#.0.1-2(&#*+"$-*$%#-(*..#2",&$-1(2"33-#-,$(4",21(.3(0.5-#()&,&6-)-,$(1.'%$".,1(7)%'$"0'-('-!-'18(
&00#.&*+-18($")-(*.,1$&,$18(.9:-*$"!-(3%,*$".,18(&,2(&*$%&$.#1;<(=->(3-&$%#-1(.3(.%#(1.'%$".,(",*'%2-(7&;($+-(%1-(.3(&(*.,$#.'?$+-.#-$"*(*.#-($.(-,&9'-(3.#)&'(6%&#&,$--1(.3(
1$&9"'"$>8(79;(",$-''"6-,$(.!-#'.&2",6(.3($+-(*.,$#.'(*+&,,-'1($.(",*'%2-($+-(")0&*$(.3(.$+-#(*.,$#.''-#18(&,2(#-2%*",6($+-(,%)9-#(.3(",$-#3&*-1(&,2(&**-11($.(6'.9&'(2&$&<.

Our objective is thus to design a controller that decides
system’s settings (i.e. decides control variables) given the
current situation (i.e. knowledge of system structure and
measures or estimates of environment situation) in order to
keep the system satisfying its requirements. This objective can
be achieved by exploiting well established control theoretical
instruments, with a number of additional features relevant for
the assessment of actual software quality, as will be explained
in Sections IV and V.

A. A Representative Example

In this section we introduce a simple running case study,
consisting of a model for an image processing application.
The high level software model is shown in Figure 2. The
purpose of the system is to apply a filter to incoming images,
followed by a beautifying post-processing phase. It is equipped
with three different implementations of the filter: 1) direct
filtering via internal software, 2) iterative filtering via internal
software, and 3) direct filtering via outsourcing to an external
service. The DTMC system model is provided in Figure 3. The
figure shows that all operations have a certain probability of
failure (represented by transitions entering state SF). State S1
represents the point of choice between the different filtering
options. The probabilities that govern this choice and the
probability of applying one more iteration after the execution
of the iterative filter (represented by state S2) are the control
variables in our setting. Control variables are indicated by
probability variables Ci in Figure 3 (referring to Figures 2
and 3, c1a is the probability of choosing the iterative filter,
c1b is the probability of choosing the internal direct filter

and thus 1 − c1a − c1b the probability of outsourcing; c5 is
the probability of requesting another iteration of the iterative
filter). These values can be changed online by the controller
while the software is executing. The controller in fact observes
the overall behavior (i.e., the overall probability of success or
failure) and tries to guarantee the requested global reliability
requirement by adjusting the invocation probabilities.

!"#$%&
'()*%+(,$
-%+.(/%

!*%+#*(.%&
'()*%+

!,*%+,#)&
0(+%/*&'()*%+

12*%+,#)&
'()*%+

345*6
7+4/%55(,$

Fig. 2. Schema of the software system.

We assume that all the alternatives are implemented by
black-box services that can be invoked and observed from
outside only. For each of these services, a run-time monitor
collects failure (or success) rates and estimates its reliability

as the probability that a invocation to the service will fail3.
It is necessary to postulate in the environment the existence
of monitoring instruments . In fact, the reliability of the
computational units is time-varying and the overall reliability
depends on these values. Even if their nominal values are
known at design time, unpredictable events could alter them,
altering as a consequence also the software behavior. This is
not uncommon, since the alteration could for example simply
come from sharing components with other customers, so that,
at different times, their availability depends on load conditions
of computational resources. Service reliability for each server
are thus just observable values subject to variations during
time (disturbances).

!" !#

!$

!%

!&

!' !(

!)

*"

#+*"

,#-

,#.

#+,#-+,#.

*$

#+,/

*'

#+*$

#+*%

#+*&
#+*'

!/

,/

*&

*%

Fig. 3. DTMC mode for the example system.

By solving the equation system (1) for x̄0 it is possible to
obtain a closed formula that describes the explicit dependency
of reliability (s) on control variables (c) and measured relia-
bilities (r).

s = r0 · r6 ·
�
c1a · (−1 + c5) · r2

−1 + c5 · r2
+ c1br3 + (1− c1a − c1b) · r4

�
(2)

The formula of s shown in the Equation will be later used to
design the controller in Sections IV and V4.

IV. SOFTWARE MODELS AS DYNAMIC SYSTEMS

In this section we show how the dynamic evolution of the
running software, as observed via the corresponding DTMC
model, can be cast in the simple control-theoretical framework
of discrete-time dynamic systems [15], through which we
achieve self-adaptation of the behavior to react to changing
conditions in the environment. Due to space limitations, the
background theory can not be fully stated here, but the

3Estimates are here assumed to be statistically correct [12] and repre-
sentative of the average or worst case, depending on the desired analysis
scenario. Interested readers can refer to [3] for a deeper discussion about
DTMC parameters estimation at runtime, which is out of the scope of this
paper.

4The same formula can be obtained by exploiting state of the art techniques
from parametric model-checking and DTMC analysis in [13], [14]

286

events into a probability (typically, using a Bayesian approach,
as discussed in [3]). Blocks System and Controller in Figure 1
represent the modeled system and the controller, respectively.
The goal of the controller is to provide input values to the
system so that the resulting output (the observed sequence of
failure and success events) does not violate the requirement
expressed by the target, despite disturbances.

!"#$%"&&'% ()*$'+

,'-%#.#/0
1&"23

4-%/'$

52$6-&

7#86$ 96$86$

Fig. 1. Block diagram of the controlled system.

To understand what inputs and disturbances are in our
context, we must first discuss how we deal with adaptation
at the model level. We assume that the software model
describes all possible variations that may be chosen to support
adaptation. That is, the modeler anticipates a number of ways
through which the system may self adapt its behavior. In
a DTMC framework, choices can be expressed by using
probabilities, which label transitions corresponding to the
choice of different behaviors. By changing these probabilities
it is possible to either increase or decrease the chance that
a certain functionality is selected. In the extreme case, by
setting a probability to 0 (or 1) a certain functionality is either
excluded or included. These probabilities are inputs of our
controlled system, generated by the controller. By changing
them, the controller tries to ensure continuous satisfaction
of the target reliability despite disturbances. Disturbances, in
turn, are changes in the independent variables, also modeled
by transition probabilities, that represent physical phenomena,
like changes in the failure probability of external services or
in the user profiles.

To the best our knowledge, the control-theoretical approach
illustrated in this paper is a novel contribution to self-adaptive
system models. In this paper, we illustrate the approach
and provide an initial experimental assessment. The paper is
organized as follows. Section II introduces the claims of this
work and sketches the use of software models and abstractions
for dynamic adaptation and control. In Section III a DTMC
model for reliability is described and the case study used in
the rest of this paper is presented. Section IV proposes a
way to translate DTMC models into discrete time dynamic
systems. The control of the resulting dynamic system is shown
in Section V, that provides formal properties assessment
and shows the application of the proposed technique to the
chosen case study, evaluated in Section VI. Related works
are described in Section VII while section VIII concludes the
paper.

II. CONTROL THEORY AND SOFTWARE MODELING

The dynamics of software execution are very complex.
Nonetheless, being able to control those dynamics would mean
having a software capable to adapt and on-line tune itself
to meet the specified requirements. However, the presence
of intrinsic non linearities, the variety of usage profiles, the
distribution process and the interconnection of heterogeneous
components are some of the reasons why it is so hard to
directly provide a comprehensive behavioral model suitable for
control. At the same time, the need for continuous verification
of specific properties lead to the definition of simpler models.
These models are simple enough to allow the systematic syn-
thesis of controllers capable of driving the modeled dynamics
and still able to capture a number of aspects of the running
software that significantly characterize the software behavior
and support assessment of some of its properties.

In this paper we refer to a controller as any system that,
properly coupled to the software system, makes it fulfill its
requirements whenever they are feasible. Requirements can
be strict constraints on the behavior (e.g. reliability equal to a
certain value) or related to the optimization of certain metrics
on the observed software executions (e.g. minimization of
outsourcing costs or maximization of throughput).

This work is aimed at supporting the claim that control
theory provides a number of instruments that software engi-
neers can exploit to ensure the achievement of extra-functional
design goals in presence of changes in the environment. To
do so, we focus on the following main kinds of “reaction” the
controlled system should be able to provide:

1) change of the target requirements. If for some reason
the required nominal value of the overall reliability of
the composed system changes, the controller should be
able to drive the system toward a new operative state
satisfying the requirements.

2) robustness to sudden changes or fluctuations around
the nominal operative point assumed at design-time for
the environment phenomena. Interdependence among
software parts and components involves the use of third-
party services, remote storage, computing resources
out of the control of each company, and so on. All
these parts are characterized by the values of certain
QoS metrics, usually stated in convenient service level
agreements. During normal execution those values may
deviate from nominal values because of external factors
hardly predictable a priori (e.g. load conditions or hard-
ware failures). Actual values can be estimated on line
via monitoring.

3) robustness to accuracy errors in measurement and mon-
itoring. To capture relevant metrics of the execution we
rely on monitoring and/or other measurement proce-
dures. Each of these might get stuck into temporary bias
or might require a certain time to produce an appropriate
accuracy. We look for a controller able to provide a
reasonable behavior even in presence of transitory errors
on measured values. Such an ability, besides reducing

284

Controlling	
 soBware	
 vs.	
 resources	
 	

(Filieri	
 et	
 al.	
 2011;	
 	
 Maggio	
 et	
 al.	
 2012)	

MIMO	
 systems	

(Dio	
 et	
 al.,	
 2002,	
 Lu	
 et	
 al.	
 2005)	

Basic	
 model	
 architecture-­‐based	

self-­‐adaptaMon	

11	

Managed	
 system	

Environment	

Managing	
 system	

Self-­‐adapMve	
 soBware	
 system	

monitor	
 effect	

monitor	
 adapt	

Non-­‐controllable	
 soBware,	
 	

hardware,	
 network,	
 physical	
 context	

Controllable	
 soBware	

monitor	

Overview	

•  Architecture-­‐based	
 self-­‐adaptaMon	
 vs.	
 control-­‐
based	
 self-­‐adaptaMon	

•  Reference	
 approaches	
 for	
 architecture-­‐based	

self-­‐adaptaMon	

•  Formal	
 methods	
 for	
 self-­‐adapMve	
 systems	

•  AcMve	
 formal	
 methods	
 for	
 self-­‐adaptaMon	

•  Wrap	
 up	

Reference	
 approaches	
 for	

architecture-­‐based	
 self-­‐adaptaMon	

•  1999:	
 Oreizy	
 et	
 al.	
 	

•  2003:	
 MAPE-­‐K	
 IBM	

•  2004:	
 Rainbow	
 	

•  2007:	
 3-­‐layer	
 reference	
 model	
 	

•  2012:	
 FORMS	

Reference	
 approaches	
 for	
 self-­‐adaptaMon	

Oreizy	
 et	
 al.	
 1999	

	

•  AdaptaMon	
 management	

–  Life	
 cycle	
 of	
 self-­‐
adaptaMon	

–  System	
 monitors	
 and	

adapts	
 itself	
 	

•  EvoluMon	
 management	

–  Change	
 of	
 applicaMon	

soBware	

– Maintain	
 consistency	

	

P.	
 Oreizy,	
 M.	
 Gorlick,	
 R.	
 Taylor,	
 D.	
 Heimbigner,	
 G.	
 Johnson,	
 N.	
 Medvidovic,	
 A.	
 Quilici,	
 D.	
 Rosenblum,	
 and	
 A.	

Wolf,	
 An	
 Architecture-­‐Based	
 Approach	
 to	
 Self-­‐AdapMve	
 SoBware,	
 IEEE	
 Intelligent	
 Systems,	
 May/June	
 1999	

load or radio signal strength over minutes,
or historical data such as the movements
of threat forces over hours.

Figure 1 illustrates the broad spectrum of
self-adaptability. At one extreme, conditional
expressions are a form of self-adaptation; the
program evaluates an expression and alters
its behavior based on the outcome. Although
simplistic, conditional expressions are a
common mechanism for implementing adap-
tive behavior. For example, a just-in-time
compiler might invoke aggressive code-opti-
mization techniques if a function is called
frequently.

Online algorithms operate under the as-
sumption that future events (inputs) are uncer-
tain. Hence, they will occasionally perform an
expensive operation to more efficiently
respond to future operations.1 Online algo-
rithms are adaptive in that they leverage knowl-
edge about the problem and the input domain
to improve efficiency. A memory-cache-pag-
ing algorithm, for example, leverages the spa-
tial and temporal locality of memory refer-
ences in determining which cached page to
evict when making room for a new page.

Generic and parameterized algorithms
provide behaviors that are parameterized,
usually through type instantiation or exter-
nal inputs. Generic or polymorphic algo-
rithms adapt by conforming to different data
types. The C++ Standard Template Library,
for example, provides generic iterator classes
used to traverse a variety of data structures.

Algorithm selection uses properties of the
operating environment to choose the most
effective algorithm among a fixed set of avail-
able algorithms. Thus, a system that uses algo-
rithm selection adapts to changes in its operat-
ing environment by switching among a set of
algorithms. The Self dynamic optimizing com-
piler, for example, uses program-profiling data
collected during program execution to select
different code-optimization algorithms.2

At the other extreme, evolutionary program-
ming and machine-learning techniques are
adaptive in that they use properties of the oper-
ating environment and knowledge gained from
previous attempts to generate new algorithms.3

Generally, approaches near the spectrum’s
bottom intertwine concerns regarding soft-
ware adaptation and application-specific
behavior. For example, a conditional expres-
sion combines the adaptation’s specification
with the application’s specification. Conse-
quently, understanding, analyzing, and mod-
ifying the two independently is arduous.

Approaches near the top more clearly sepa-
rate software-adaptation concerns and appli-
cation-specific functionality. For example,
algorithm generation separates the adapta-
tion’s specification from the produced algo-
rithm. Separating the concerns of software
adaptation from software function facilitates
their independent analysis and evolution.

Software adaptation in-the-
large

While technical advances in narrow areas
of adaptation technology provide some ben-
efit, the greatest benefit will accrue by devel-
oping a comprehensive adaptation method-
ology that spans adaptation-in-the-small to
adaptation-in-the-large, and then develops
the technology that supports the entire range
of adaptations. Figure 2 illustrates just such
a methodology that we are investigating.

The upper half of the diagram, labeled
“adaptation management,” describes the life-
cycle of adaptive software systems. The life-
cycle can have humans in the loop or be fully
autonomous. “Evaluate and monitor obser-
vations” refers to all forms of evaluating and
observing an application’s execution, includ-
ing, at a minimum, performance monitoring,
safety inspections, and constraint verifica-
tion. “Plan changes” refers to the task of
accepting the evaluations, defining an appro-

priate adaptation, and constructing a blue-
print for executing that adaptation. “Deploy
change descriptions” is the coordinated con-
veyance of change descriptions, components,
and possibly new observers or evaluators to
the implementation platform in the field.
Conversely, deployment might also extract
data, and possibly components, from the run-
ning application and convey them to some
other point for analysis and optimization.

Adaptation management and consistency
maintenance play key roles in this approach.
Although mechanisms for runtime software
change are available in operating systems
(for example, dynamic-link libraries in Unix
and Microsoft Windows), component object
models, and programming languages, these
facilities all share a major shortcoming: they
do not ensure the consistency, correctness,
or other desired properties of runtime
change. Change management is a critical
aspect of runtime-system evolution that
identifies what must be changed; provides
the context for reasoning about, specifying,
and implementing change; and controls
change to preserve system integrity. With-
out change management, the risks engen-
dered by runtime modifications might out-
weigh those associated with shutting down
and restarting a system.

Software adaptation is a complex process
and is further complicated by change drivers
ranging from purposeful adjustments in

56 IEEE INTELLIGENT SYSTEMS

Maintain
consistency

and system integrity

Plan changes

Deploy change
descriptions

Enact changes and
collect observations

Evolution
management

Architectural
model

Implementation

Adaptation
management

Evaluate and
monitor

observations

Figure 2. High-level processes in a comprehensive, general-purpose approach to self-adaptive software systems.

Reference	
 approaches	
 for	
 self-­‐adaptaMon	

IBM	
 MAPE-­‐K	
 2003	

	

•  Autonomic	
 manager	

–  Reference	
 model	

–  Four	
 key	
 funcMons	

	
 	
 	
 	
 +	
 knowledge	

•  Four	
 types	
 of	
 self-­‐
adaptaMons	

–  Self-­‐configuraMon	

–  Self-­‐opMmizaMon	

–  Self-­‐healing	

–  Self-­‐protecMon	

	

Kephart	
 and	
 Chess,	
 The	
 vision	
 of	
 autonomic	
 CompuMng,	
 IEEE	
 Computer,	
 January	
 2003	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

44 Computer

interactions among autonomic elements as it will
from the internal self-management of the individual
autonomic elements—just as the social intelligence
of an ant colony arises largely from the interactions
among individual ants. A distributed, service-ori-
ented infrastructure will support autonomic ele-
ments and their interactions.

As Figure 2 shows, an autonomic element will
typically consist of one or more managed elements
coupled with a single autonomic manager that con-
trols and represents them. The managed element
will essentially be equivalent to what is found in
ordinary nonautonomic systems, although it can
be adapted to enable the autonomic manager to
monitor and control it. The managed element could
be a hardware resource, such as storage, a CPU, or
a printer, or a software resource, such as a data-
base, a directory service, or a large legacy system.

At the highest level, the managed element could
be an e-utility, an application service, or even an
individual business. The autonomic manager dis-
tinguishes the autonomic element from its nonau-
tonomic counterpart. By monitoring the managed
element and its external environment, and con-
structing and executing plans based on an analysis

of this information, the autonomic manager will
relieve humans of the responsibility of directly man-
aging the managed element.

Fully autonomic computing is likely to evolve as
designers gradually add increasingly sophisticated
autonomic managers to existing managed elements.
Ultimately, the distinction between the autonomic
manager and the managed element may become
merely conceptual rather than architectural, or it
may melt away—leaving fully integrated, auto-
nomic elements with well-defined behaviors and
interfaces, but also with few constraints on their
internal structure.

Each autonomic element will be responsible for
managing its own internal state and behavior and
for managing its interactions with an environment
that consists largely of signals and messages from
other elements and the external world. An element’s
internal behavior and its relationships with other
elements will be driven by goals that its designer
has embedded in it, by other elements that have
authority over it, or by subcontracts to peer ele-
ments with its tacit or explicit consent. The element
may require assistance from other elements to
achieve its goals. If so, it will be responsible for
obtaining necessary resources from other elements
and for dealing with exception cases, such as the
failure of a required resource.

Autonomic elements will function at many levels,
from individual computing components such as
disk drives to small-scale computing systems such
as workstations or servers to entire automated
enterprises in the largest autonomic system of all—
the global economy.

At the lower levels, an autonomic element’s range
of internal behaviors and relationships with other
elements, and the set of elements with which it can
interact, may be relatively limited and hard-coded.
Particularly at the level of individual components,
well-established techniques—many of which fall
under the rubric of fault tolerance—have led to the
development of elements that rarely fail, which is
one important aspect of being autonomic. Decades
of developing fault-tolerance techniques have pro-
duced such engineering feats as the IBM zSeries
servers, which have a mean time to failure of sev-
eral decades.

At the higher levels, fixed behaviors, connections,
and relationships will give way to increased
dynamism and flexibility. All these aspects of auto-
nomic elements will be expressed in more high-
level, goal-oriented terms, leaving the elements
themselves with the responsibility for resolving the
details on the fly.

Autonomic manager

Knowledge

Managed element

Analyze Plan

Monitor Execute

Figure 2. Structure of an autonomic element. Elements interact with other
elements and with human programmers via their autonomic managers.

Reference	
 approaches	
 for	
 self-­‐adaptaMon	
 	

Rainbow	
 2004	
 	

	

•  Framework	
 realizes	

MAPE	
 control	
 loop	

•  Uses	
 architecture	
 model	

of	
 system	
 and	
 context	

•  Checks	
 constraints	

•  Adapts	
 running	
 system	
 if	

violaMon	
 is	
 detected	

	

D.	
 Garlan,	
 S-­‐W.	
 Cheng,	
 A.C.	
 Huang,	
 B.	
 Schmerl,	
 P.	
 Steenkiste,	
 Rainbow:	
 Architecture-­‐	
 Based	
 Self-­‐
AdaptaMon	
 with	
 Reusable	
 Infrastructure,	
 IEEE	
 Computer,	
 October	
 2004	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

October 2004 47

nisms from scratch for each new system would ren-
der the approach prohibitively expensive.

Our Rainbow framework attempts to address
both problems. By adopting an architecture-based
approach, it provides reusable infrastructure together
with mechanisms for specializing that infrastructure
to the needs of specific systems. These specialization
mechanisms let the developer of self-adaptation capa-
bilities choose what aspects of the system to model
and monitor, what conditions should trigger adap-
tation, and how to adapt the system.

THE RAINBOW FRAMEWORK
Figure 2 shows the Rainbow framework’s con-

trol loop for self-adaptation. Rainbow uses an
abstract architectural model to monitor an execut-
ing system’s runtime properties, evaluates the
model for constraint violation, and—if a problem
occurs—performs global- and module-level adap-
tations on the running system.

Software architectures
Rainbow adopts a standard view of software

architecture that is typically used today at design
time to characterize a system to be built. Specifi-
cally, an architecture is represented as a graph of
interacting computational elements.4 Nodes in the
graph, called components, represent the system’s
principal computational elements and data stores,
including clients, servers, databases, and user inter-
faces. Arcs, called connectors, represent the path-
ways for interaction between the components.
Additionally, architectural elements may be anno-
tated with various properties, such as expected
throughputs, latencies, and protocols of interac-
tion. Components themselves may represent com-
plex systems, which are represented hierarchically
as subarchitectures.

However, unlike traditional uses of software
architecture as strictly a design-time artifact,
Rainbow includes a system’s architectural model
in its runtime system. In particular, developers of
self-adaptation capabilities use a system’s software
architectural model to monitor and reason about
the system. Using a system’s architecture as a con-
trol model for self-adaptation holds promise in sev-
eral areas. As an abstract model, an architecture
can provide a global perspective of the system and
expose important system-level behaviors and prop-
erties. As a locus of high-level system design deci-
sions, an architectural model can make a system’s
topological and behavioral constraints explicit,
establishing an envelope of allowed changes and
helping to ensure the validity of a change.

Figure 3 shows one example of an architecture
in which the components represent Web clients and
server clusters. Each server cluster has a subarchi-

System

Control

Adapt Monitor

Figure 1. External control of self-adaptation uses external models to monitor and
modify a system dynamically.

Translation infrastructure

Executing system

Architecture layer

System API

Constraint
evaluator

Adaptation
engine

Model
manager

Mappings

Strategies
and tactics

Rules

Adaptation
executor

Types and
properties

System layer

Operators

Discovery ProbesResource
discoveryEffectors

Gauges

Figure 2. Rainbow framework. The framework uses an abstract model to monitor
an executing system’s runtime properties, evaluates the model for constraint vio-
lation, and—if a problem occurs—performs adaptations on the running system.

Client1 Client2 Client3 Client4 Client5 Client6

ServerGrp2 ServerGrp3

Component ServerGrp1
(ServerGrpRep)

ServerGrp1

Server3Server2Server1

Figure 3. Client-server system software architecture. This model represents the
architecture as a hierarchical graph of interacting components.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 1, 2008 at 11:14 from IEEE Xplore. Restrictions apply.

Reference	
 approaches	
 for	
 self-­‐adaptaMon	
 	

3-­‐Layer	
 reference	
 model	
 2007	
 	

	

Kramer	
 and	
 Magee,	
 Self-­‐adaptaMon:	
 an	
 architecture	
 challenge,	
 Future	
 of	
 SoBware	
 Engineering,	

FOSE	
 2007	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

!"#$%&'(")*+,-.,"$"/*0%+1(/$+/!%$*("*%$2.,"2$*/,*"$3*
2/0/$2* %$.,%/$#* 4'* /10/* &0'$%* ,%* ("* %$2.,"2$* /,* "$3*
,45$+/(6$2* %$7!(%$#*,8* /1$* 2'2/$-* ("/%,#!+$#* 8%,-* /1$*
&0'$%*04,6$9*:1(2*&0'$%*+0"*("/%,#!+$*"$3*+,-.,"$"/2;*
%$+%$0/$* 80(&$#* +,-.,"$"/2;* +10")$* +,-.,"$"/*
("/$%+,""$+/(,"2* 0"#* +10")$* +,-.,"$"/* ,.$%0/(")*
.0%0-$/$%29* </* +,"2(2/2* ,8* 0* 2$/* ,8* .&0"2* 31(+1* 0%$*
0+/(60/$#*("*%$2.,"2$*/,*+10")$2*,8*/1$*,.$%0/(")*2/0/$*
,8* /1$* !"#$%&'(")* 2'2/$-9* =,%* $>0-.&$?* 31$"* 0*
+,-.,"$"/* 80(&2?* +10")$* -0"0)$-$"/* +0"* 88+/* 0*
%$.0(%*$(/1$%*4'*+10")(")*+,-.,"$"/*+,""$+/(,"2*,%*4'*
+%$0/(")* "$3* +,-.,"$"/29* <"* %,4,/(+* 2'2/$-2?* /1(2*
&0'$%*102*4$$"*(-.&$-$"/$#*("*0*"!-4$%*,8*30'2*8%,-*
+,"#(/(,"0&* 2$7!$"+(")* 2'2/$-2* @ABC* /,* 2$/2* ,8* 2/0/$*
-0+1("$29*D,%E* ("* /1$*"$/3,%E*-0"0)$-$"/*0%$0*102*
.%,#!+$#* &0")!0)$2* 2!+1* 02* F,"#$%* @AGC* 31(+1*
.$%8,%-*0*2(-(&0%*8!"+/(,"*/,*/1$*.&0""(")*&0")!0)$2*("*
/1$*+,"/$>/*,8*2'2/$-29*F,"#$%*(2*22"/(0&&'*0*&0")!0)$*
31(+1* $>$+!/$* 0+/(,"2* ("* %$2.,"2$* /,* %$+,)"(2(")*
H.,22(4&$*+,-.&$>I*6"/29*:1$*$22$"/(0&*+10%0+/$%(2/(+*
,8*/1(2*+10")$*-0"0)$-$"/*&0'$%*(2*/10/*(/*+,"2(2/2*,8*0*
2$/* ,8* .%$J2.$+(8($#* .&0"2* 31(+1* 0%$* 0+/(60/$#* ("*
%$2.,"2$* /,* 2/0/$* +10")$* 8%,-* /1$* 2'2/$-*4$&,39*:1$*
&0'$%* +0"* %$2.,"#* 7!(+E&'* /,* "$3* 2(/!0/(,"2* 4'*
$>$+!/(")*310/*0%$*("*$22$"+$*.%$J+,-.!/$#*.&0"29*<8*0*
2(/!0/(,"* (2* %$.,%/$#* 8,%* 31(+1* 0* .&0"* #,$2* ",/* $>(2/*
/1$"* /1(2* &0'$%*-!2/* ("6,E$* /1$* 2$%6(+$2*,8* /1$*1()1$%*
.&0""(")*&0'$%9*<"*0##(/(,"?*"$3*),0&2*8,%*0*2'2/$-*3(&&*
("6,&6$*"$3*.&0"2*4$(")*("/%,#!+$#*("/,*/1(2*&0'$%9**

!"#!$%&'()&*&+,-,*.(
:1$*!..$%-,2/*&0'$%*,8*K0/L2*/1%$$*&0'$%*0%+1(/$+/!%$*(2*
/1$* #$&(4$%0/(,"* &0'$%9* :1(2* &0'$%* +,"2(2/2* ,8* /(-$*
+,"2!-(")*+,-.!/0/(,"2*2!+1*02*.&0""(")*31(+1*/0E$2*
/1$* +!%%$"/* 2/0/$* 0"#* 0* 2.$+(8(+0/(,"* ,8* 0* 1()1J&6&*
),0&* 0"#* 0//$-./2* /,* .%,#!+$* 0* .&0"* /,* 0+1(6* /10/*
),0&9* M"* $>0-.&$* ("* %,4,/(+2* 3,!&#* 4$*)(6$"* /1$*
+!%%$"/* .,2(/(,"* ,8* 0* %,4,/* 0"#* 0* -0.* ,8* (/2*
$"6(%,"-$"/*.%,#!+$*0*%,!/$*.&0"*8,%*$>$+!/(,"*4'*/1$*
2$7!$"+(")*&0'$%9*N10")$2*("*/1$*$"6(%,"-$"/?*2!+1*02*
,42/0+&$2* /10/* 0%$* ",/* ("* /1$* -0.?* 3(&&* ("6,&6$* %$J
.&0""(")9* :1$* %,&$* ,8* /1$* $7!(60&$"/* &0'$%* ("* 0* 2$&8J
-0"0)$#* 2'2/$-* (2* K,0&* O0"0)$-$"/9* :1(2* &0'$%*
.%,#!+$2* +10")$* -0"0)$-$"/* .&0"2* ("* %$2.,"2$* /,*
%$7!$2/2* 8%,-* /1$* &0'$%* 4$&,3* 0"#* ("* %$2.,"2$* /,* /1$*
("/%,#!+/(,"*,8*"$3*),0&29*=,%*$>0-.&$?* (8* /1$*),0&* ("*
/,*-0("/0("* 2,-$* 0%+1(/$+/!%0&* .%,.$%/'* 2!+1* 02* /%(.&$*
%$#!"#0"+'* 8,%* 0&&* 2$%6$%2?* /1(2* &0'$%* +,!&#* 4$*
%$2.,"2(4&$* 8,%* 8("#(")* /1$* %$2,!%+$2* ,"* 31(+1* /,*
+%$0/$* "$3* +,-.,"$"/2* 08/$%* 80(&!%$* 0"#* .%,#!+(")* 0*
.&0"* 02* 1,3* /,* +%$0/$* 0"#* ("/$)%0/$* /1$2$* "$3*
+,-.,"$"/2* /,* /1$*+10")$*-0"0)$-$"/*&0'$%9*</*+,!&#*
4$* %$2.,"2(4&$* 8,%* #$+(#(")* /1$* ,./(-0&* .&0+$-$"/* ,8*
2$%6$%2* 8,%* &,0#* 40&0"+(")* .!%.,2$29* M2* 3$* 3(&&*

0##%$22* 8!%/1$%* ("* /1$* "$>/* 2$+/(,"* /1$%$* 0%$* -0"'*
%$2$0%+1* (22!$2*1$%$*02* /,*1,3* /,* %$.%2"/*1()1* &6&*
2'2/$-*),0&2?* 1,3* /,* 2'"/1$2(P$* +10")$*-0"0)$-$"/*
.&0"2* 8%,-* /1$2$*),0&2* 0"#* 1,3*)$"$%0&* ,%* #,-0("*
2.$+(8(+*/1(2*&0'$%*21,!&#*4$9*

=()!%$* A* 2!--0%(2$2* ,!%* .%,.,2$#* /1%$$* &0'$%*-,#$&*
8,%* 0* 2$&8* -0"0)$#* 2'2/$-* 8,&&,3(")* K0/L2* 3,%E* ,"*
0%+1(/$+/!%$2*8,%*%,4,/(+*2'2/$-29*:1$*.%("+(.0&*+%(/$%(0*
8,%* .&0+(")* 8!"+/(,"* ("* #(88$%$"/* &0'$%2* ("* K0/L2*
0%+1(/$+/!%$*(2*,"$*,8*/(-$*2+0&$*0"#*/1(2*3,!&#*2$$-*/,*
0..&'*$7!0&&'*3$&&*/,*2$&8*-0"0)$#*2'2/$-29*<--$#(0/$*
8$$#40+E*0+/(,"2*0%$*0/*/1$*&,3$2/*&$6$&*0"#*/1$*&,")$2/*
0+/(,"2* %$7!(%(")* #$&(4$%0/(,"* 0%$* 0/* /1$* !..$%-,2/*
&6&9* D$* 3,!&#* $-.102(P$* /10/* 3$* #,* ",/* +,"2(#$%*
/1(2* 0"* (-.&$-$"/0/(,"* 0%+1(/$+/!%$* 4!/* %0/1$%* 0*
+,"+$./!0&* ,%* %$8$%$"+$* 0%+1(/$+/!%$* 31(+1* (#$"/(8($2*
/1$* "$+$220%'* 8!"+/(,"0&(/'* 8,%* 2$&8* -0"0)$-$"/9* D$*
3(&&* !2$* (/* ("* /1$* "$>/* 2$+/(,"* /,* ,%)0"(2$* 0"#* 8,+!2*
#(2+!22(,"* ,8* /1$* %$2$0%+1* +10&&$")$2* .%$2$"/* 4'* 2$&8*
-0"0)$-$"/9*

*

"#$%!
&$'$()*)'+

,-$'()!
&$'$()*)'+

,#*.#')'+!
,#'+/#%

!"#"$%

&'#()*+,-"./(%

!" !#

$" $#

&'#()*+01#(%

01#(+2*3$*%"

%

%& %'
"#$%!
&$'$()*)'+

,-$'()!
&$'$()*)'+

,#*.#')'+!
,#'+/#%

!"#"$%

&'#()*+,-"./(%

!" !#

$" $#

&'#()*+01#(%

01#(+2*3$*%"

%

%& %'

*
/0+12,(3(4(562,,(7&8,2(92:60.,:.12,()%;,'(<%2(

(=,'<>)&*&+,-,*."(

(

#! ?,@,&2:6(A@@1,@(
<"* /1$* .%$6(,!2* 2$+/(,"* 3$* ,!/&("$#* 0* /1%$$* &0'$%*
0%+1(/$+/!%$* -,#$&* 31(+1* (2* ("/$"#$#* 02* 0* 8,%-* ,8*
%8%$"+$* -,#$&* %0/1$%* /10"* 02* 0*)!(#$* /,* 1,3* 2$&8*
-0"0)$#* 2,8/30%$* 21,!&#* 4$* (-.&$-$"/$#9* <"* /1(2*
2$+/(,"?*3$*!2$*/1$*-,#$&*/,*2/%!+/!%$*/1$*.%$2$"/0/(,"*
,8* /1$* %$2$0%+1* (22!$2* 3$* 2$$* .%2"/$#* 4'* /1$*
+10&&$")$* ,8* (-.&$-$"/(")* 2$&8J-0"0)$#* 2'2/$-29* :,*
)%,!"#* /1(2* #(2+!22(,"?* 3$* #%03* $>0-.&$2* 8%,-* /1$*
3,%E*3(/1*31(+1*3$* 0%$*-,2/* 80-(&(0%* Q* "0-$&'* ,!%*
,3"9*

#"3!B%-C%*,*.(B%*.2%'(7&8,2(
D$* 0%$* +,"+$%"$#* 3(/1* -0"0)$-$"/* 0/* /1$*
0%+1(/$+/!%0&* &$6$&* 31$%$* 3$* +,"2(#$%* 0* 2'2/$-* /,*

	

•  Reference	
 model	
 based	
 on	
 Gat’s	

3-­‐layer	
 roboMcs	
 model	

•  Component	
 control	
 realizes	

applicaMon	
 funcMons	

•  Change	
 management	
 handles	

adaptaMons	
 of	
 component	
 layer	

based	
 on	
 set	
 of	
 plans	
 	

•  Goal	
 management	
 produces	

change	
 management	
 plans	

when	
 needed	
 (e.g.,	
 to	
 deal	
 with	

new	
 condiMons	
 or	
 goals)	
 	

Reference	
 approaches	
 for	
 self-­‐adaptaMon	
 	

FORMS	
 2012	
 	

	

D.	
 Weyns,	
 S.	
 Malek,	
 J.	
 Andersson,	
 	
 FORMS:	
 Formal	
 reference	
 model	
 for	
 self-­‐adaptaMon,	
 ACM	
 TransacMons	

on	
 Autonomous	
 and	
 AdapMve	
 Systems,	
 TAAS	
 7(1),	
 2012	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

•  FOrmal	
 Reference	
 Model	
 for	
 Self-­‐adaptaMon	

•  Integrates	
 different	
 perspecMves	
 on	
 self-­‐
adaptaMon	

–  ReflecMon	
 perspecMve	
 	

– MAPE-­‐K	
 perspecMve	

–  DistribuMon	
 perspecMve	

FORMS:	
 Running	
 Example	

Traffic	
 jam	
 monitoring	

19	

	

D.	
 Weyns,	
 R.	
 Haesevoets,	
 A.	
 Helleboogh,	
 T.	
 Holvoet,	
 W.	
 Joosen,	
 The	
 MACODO	
 Middleware	
 for	
 Context-­‐Driven	

Dynamic	
 Agent	
 OrganzaMons,	
 ACM	
 TransacMon	
 on	
 Autonomous	
 and	
 AdapMve	
 Systems,	
 5(1):3.1–3.29,	
 2010.	

	

20	

Running	
 Example:	
 traffic	
 jam	
 monitoring	

21	

Running	
 Example:	
 traffic	
 jam	
 monitoring	

FORMS	
 ReflecMon	
 PerspecMve	

22	

23	

FORMS	
 ReflecMon	
 PerspecMve	

Self-­‐adapMve	
 system	

FORMS	
 ReflecMon	
 PerspecMve	

24	

Self-­‐adapMve	
 system	

25	

FORMS	
 ReflecMon	
 PerspecMve	

Environment	

26	

FORMS	
 ReflecMon	
 PerspecMve	

Environment	

27	

FORMS	
 ReflecMon	
 PerspecMve	

Base-­‐Level	
 Subsystem	

28	

FORMS	
 ReflecMon	
 PerspecMve	

Base-­‐Level	
 Subsystem	

29	

ReflecMve	
 Subsystem	

FORMS	
 ReflecMon	
 PerspecMve	

30	

ReflecMve	
 Subsystem	

FORMS	
 ReflecMon	
 PerspecMve	

31	

FORMS	
 Distributed	
 CoordinaMon	
 PerspecMve	

32	

FORMS	
 Distributed	
 CoordinaMon	
 PerspecMve	

Local	
 Self-­‐AdapMve	
 System	

33	

FORMS	
 Distributed	
 CoordinaMon	
 PerspecMve	

Local	
 Managed	
 System	
 –	
 Self-­‐AdapMve	
 Unit	

34	

FORMS	
 Distributed	
 CoordinaMon	
 PerspecMve	

Local	
 Managed	
 System	
 –	
 Self-­‐AdapMve	
 Unit	

35	

FORMS	
 Distributed	
 CoordinaMon	
 PerspecMve	

CoordinaMon	
 Mechanism	

36	

ping/echo	
 msgs	

FORMS	
 Distributed	
 CoordinaMon	
 PerspecMve	

CoordinaMon	
 Mechanism	

FORMS	
 MAPE	
 PerspecMve	

37	

38	

FORMS	
 MAPE	
 PerspecMve	

Local	
 ReflecMve	
 ComputaMons	

39	

FORMS	
 MAPE	
 PerspecMve	

Local	
 ReflecMve	
 ComputaMons	

40	

sense	

adapt	

perceive	

FORMS	
 MAPE	
 PerspecMve	

Local	
 ReflecMve	
 ComputaMons	

41	

FORMS	
 MAPE	
 PerspecMve	

ReflecMon	
 Models	

42	

FORMS	
 MAPE	
 PerspecMve	

ReflecMon	
 Models	

(A	
 glimpse	
 of)	
 FORMS	
 in	
 acMon	

43	

FORMS	
 in	
 acMon	

44	

FORMS	
 in	
 acMon	

45	

...	

...	

...	

FORMS	
 in	
 acMon	

46	

FORMS	
 in	
 acMon	

16 · Danny Weyns, Sam Malek, and Jesper Andersson

Timeout
ΞSelfHealingManager
Tick
n! : Name

∃n! : Name; t : Time • (n!, t) ∈ coordinationMechanism.pingTime ∧
t + coordinationMechanism.waitTime > time �

The schema tells us that a timeout does not change its state. A timeout happens when the clock
makes a tick. The predicate states that a timeout for a particular camera is reached when the
time after the tick exceeds the last ping time for that camera plus the wait time.

We now explain how self-healing is realized for one of the cameras. The timeout for self-
healing manager 1 after the crash of camera 2 is defined as:

Timeout1
Timeout
ΞSelfHealingManagerOneT2

time = 4470
n! = 2

The timeout happens when the clock makes a tick at time “4470” (recall that the ping message
to camera 2 was sent at time “4430” and the waiting time is 40 time units). The timeout applies
for camera 2.

Finally, the recovery of camera 1 for the failure of camera 2 is defined as:
CameraOneRecoversFromFailureCameraTwo
∆TrafficJamMonitoringSystemT3

TrafficEnvironmentT3

Timeout1
lcs1?, lcs1! : SituatedLocalCameraSystem
camera : Attribute
cam : EnvironmentRepresentation
n : Name

{camera} = first(c?) ∧
traffic communication channel = traffic communication channel \ {n �→ cam} ∧
...
lcs1?.myName = 1 ∧
lcs1!.context = lcs1?.context \ {camera} ∧
lcs1!.selfHealingSubsystem = updateSelfHealingSubsystem(lcs1?, camera, cam,n) ∧
lcs1!.localTrafficMonitoringSystem =

adaptLocalTrafficMonitoringSystem(lcs1?, camera, cam,n) ∧
localCamaraSystems � = localCamaraSystems \ {lcs1?} ∪ {lcs1!}

The specification declaratively specifies the adaptations the local camera system after the failure
of the camera. The first part of the predicate selects the failing camera using the camera failure
event. Next, the communication channels are updated. Then, some minor aspects are omitted.
Subsequently, the recovering local camera system is selected (with myName = 1) and the failing
camera is removed from its context. Finally, the adaptation is specified, consisting of two parts:
an update of the state of the self-healing subsystem and the actual adaptation of the local traffic
monitoring system (using two helper functions that are omitted here). From an operational
point of view, the self-healing manager will update its state and apply the adaptation of the
local traffic monitoring system using various read and write operations.
ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Danny Weyns, Sam Malek, and Jesper Andersson

Timeout
ΞSelfHealingManager
Tick
n! : Name

∃n! : Name; t : Time • (n!, t) ∈ coordinationMechanism.pingTime ∧
t + coordinationMechanism.waitTime > time �

The schema tells us that a timeout does not change its state. A timeout happens when the clock
makes a tick. The predicate states that a timeout for a particular camera is reached when the
time after the tick exceeds the last ping time for that camera plus the wait time.

We now explain how self-healing is realized for one of the cameras. The timeout for self-
healing manager 1 after the crash of camera 2 is defined as:

Timeout1
Timeout
ΞSelfHealingManagerOneT2

time = 4470
n! = 2

The timeout happens when the clock makes a tick at time “4470” (recall that the ping message
to camera 2 was sent at time “4430” and the waiting time is 40 time units). The timeout applies
for camera 2.

Finally, the recovery of camera 1 for the failure of camera 2 is defined as:
CameraOneRecoversFromFailureCameraTwo
∆TrafficJamMonitoringSystemT3

TrafficEnvironmentT3

Timeout1
lcs1?, lcs1! : SituatedLocalCameraSystem
camera : Attribute
cam : EnvironmentRepresentation
n : Name

{camera} = first(c?) ∧
traffic communication channel = traffic communication channel \ {n �→ cam} ∧
...
lcs1?.myName = 1 ∧
lcs1!.context = lcs1?.context \ {camera} ∧
lcs1!.selfHealingSubsystem = updateSelfHealingSubsystem(lcs1?, camera, cam,n) ∧
lcs1!.localTrafficMonitoringSystem =

adaptLocalTrafficMonitoringSystem(lcs1?, camera, cam,n) ∧
localCamaraSystems � = localCamaraSystems \ {lcs1?} ∪ {lcs1!}

The specification declaratively specifies the adaptations the local camera system after the failure
of the camera. The first part of the predicate selects the failing camera using the camera failure
event. Next, the communication channels are updated. Then, some minor aspects are omitted.
Subsequently, the recovering local camera system is selected (with myName = 1) and the failing
camera is removed from its context. Finally, the adaptation is specified, consisting of two parts:
an update of the state of the self-healing subsystem and the actual adaptation of the local traffic
monitoring system (using two helper functions that are omitted here). From an operational
point of view, the self-healing manager will update its state and apply the adaptation of the
local traffic monitoring system using various read and write operations.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Reference	
 approaches	
 for	
 self-­‐adaptaMon	
 	

FORMS	
 2012	
 	

	

•  Integrated,	
 extensible	
 model	

•  Formal	
 underpinning	

•  Focus	
 on	
 modeling	
 and	
 reasoning	
 about	
 structural	

aspects	
 of	
 self-­‐adapMve	
 systems	

•  Reference	
 model	
 can	
 be	
 mapped	
 to	
 different	

architectures	
 	

•  Vocabulary	
 for	
 domain	
 of	
 self-­‐adapMve	
 systems	

	

Overview	

•  Architecture-­‐based	
 self-­‐adaptaMon	
 vs.	
 control-­‐
based	
 self-­‐adaptaMon	

•  Reference	
 approaches	
 for	
 architecture-­‐based	

self-­‐adaptaMon	

•  Formal	
 methods	
 for	
 self-­‐adapMve	
 systems	

•  AcMve	
 formal	
 methods	
 for	
 self-­‐adaptaMon	

•  Wrap	
 up	

Formal	
 methods	
 for	
 self-­‐adaptaMon	

A	
 selecMon	

•  2006:	
 Zhang	
 &	
 Cheng	
 (design	
 Mme	
 verificaMon	

and	
 model	
 transformaMon)	

•  2009:	
 Epifani	
 et	
 al.	
 (K	
 models	
 at	
 runMme)	
 	

•  2011:	
 Calinescu	
 et	
 al.	
 	
 (MAPE	
 funcMons	
 at	

runMme)	

•  2013:	
 Ghezzy	
 et	
 al.	
 (model	
 interpretaMon)	

	

D.	
 Weyns,	
 U.	
 IBikhar,	
 D.	
 Gil	
 de	
 la	
 Iglesia,	
 and	
 T.	
 Ahmad,	
 A	
 Survey	
 on	
 Formal	
 Methods	
 in	
 Self-­‐AdapMve	

Systems,	
 FiBh	
 InternaMonal	
 C*	
 Conference	
 on	
 Computer	
 Science	
 and	
 SoBware	
 Engineering	
 2012	

Formal	
 methods	
 for	
 self-­‐adapMve	
 systems	
 	

Zhang	
 and	
 Cheng	
 2006	
 	

	

•  Different	
 classes	
 of	

adaptaMons	

–  one-­‐point,	
 guided	

adaptaMon,	
 overlap	

adaptaMon	

•  Process	
 to	
 create	
 and	

verify	
 formal	
 models	

(Petri	
 nets	
 and	
 LTL)	

•  AutomaMcally	
 generate	

programs	
 from	
 them	

	

J.	
 Zhang	
 and	
 B.	
 Cheng,	
 Model-­‐based	
 development	
 of	
 dynamically	
 adapMve	
 soBware,	
 InternaMonal	

Conference	
 on	
 SoBware	
 Engineering,	
 ICSE	
 2006	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

gsm(x)

x

x x x

z

x

y

[i,x,y,z]

readData inputData

dataX

index

dataSource
x[i,x,y,z]

0

i

encodedData sendencode

0 network

1

i+1

shiftYdataYshiftX dataZ

gsm(x)

x

x x x x

z

x

y

inputData

dataX

dataSource
x[i,x,y,z]

0

i

encodedDataencode

0 network

1

i+1

shiftYdataYshiftX dataZ

Sender Source Model

index

x

x

x
readData

restrict

Sender Restricted Model (N)

Figure 10: Sender restricted source net

specified global invariants, an adaptive program should also
satisfy an adaptation integrity constraint : Once the adap-
tation starts, it should complete, i.e., the adaptation
should finally reach a state of the target program. Viola-
tions of this constraint result in an inconsistent state of the
program that is not designed for the target domain, and we
have no means to ensure its correctness.

The example shown in Figures 8, 9, and 10 is, in fact, an
entire model with overlap adaptation. After the sender has
adapted to the target domain, the receiver still remains in
its source domain. The adaptation starts when the sender
adapt transition is fired, and ends when the receiver adapt
transition is fired. The adaptation of the sender and the
receiver has a cause-effect relationship: The receiver’s adap-
tive transition is triggered by a packet sent by the adapted
sender. By composing the sender and the receiver adapta-
tion as an overlap adaptation, we are able to specify the
following two additional constraints:

• GSM example loss-tolerance global invariant:
The adaptive program should tolerate 2-packet loss
throughout its execution. In LTL,

(!lossCount <= 2) → (!¬lose(x))

We used model checking to verify this property successfully.

• GSM example adaptation integrity constraint:
If the sender adaptive transition is fired, then the re-
ceivers’s adaptive transition will also eventually be fired.
In LTL,

!(senderAdapted → ♦receiverAdapted)

We found errors when model checking the adaptation in-
tegrity constraint. By inspecting the counter example, we
realized that in a rare case, if all the packets after the
sender’s adaptation are lost, then the receiver will not re-
ceive any packet encoded by the target sender, and thus the
receiver will not adapt. We revised the model by using a re-
liable communication channel to send the first packet after
sender adaptation, so that the receiver will be guaranteed

to receive the packet. Note that it is generally possible to
build a reliable communication channel on top of unreliable
underlying infrastructure by using acknowledgement-based
protocols. Using it to send audio-stream would incur a per-
formance penalty. However, the penalty is negligible, if we
use it to send only critical packets occasionally. We reran the
model checking for the revised model against the adaptation
integrity constraint and the result showed that the adapta-
tion indeed runs to completion with the revised model.

4.4 Discussion
As described in Section 3, depending on the perspective

and the level of abstraction in which the developers are inter-
ested, a source program, a target program, or an adaptation
set may be adaptive itself. The above specification technique
may be applied recursively to specify the internal structure
of a program or an adaptation set. For the GSM-oriented
protocol example, we may apply guided adaptation for the
sender and one-point adaptation for the receiver, resulting
in a more complex adaptation scenario.

For a general adaptive program with multiple programs
and adaptation sets, we first divide the program into a num-
ber of simple adaptive programs, then specify each simple
adaptive program individually. In our approach, we ver-
ify the global invariants for each simple adaptive program.
We expect the global invariants to hold for all executions,
including those with multiple occurrences of adaptations.
We can prove that this is the case for all point safety and
point liveness LTL formulae and their propositional compo-
sitions [24]. A point safety formula has the form !¬η where
η is a point formula [25], i.e., a formula without temporal op-
erators. A point liveness formula has the form !(α → ♦β),
where both α and β are point formulae. The global in-
variants discussed in this paper are all point liveness, point
safety properties, or their propositional compositions.

5. REIFYING THE MODELS
An adaptive model is an abstraction of an adaptive pro-

gram in the sense that a model is a projection of the pro-
gram behavior on an interesting alphabet (i.e., transitions);
it represents a partial view of a program in which we are in-
terested. We explain this idea with the GSM-oriented audio
streaming example. From the models we have built, we can
identify four different programs (Figure 11): the source and
the target programs PS and PT , and two intermediate pro-
grams P1 and P2. The model in Figure 8 describes the adapt
sender adaptation projected onto the sender. The model in
Figure 9 describes the adapt receiver adaptation projected
onto the receiver. The model in Figure 10 describes the
restrict sender adaptation projected onto the sender.

!"#$%&'
!&()&$

!"#$%&'
$&%&*+&$

$&!,$*%,&)'
!&()&$

!"#$%&'
$&%&*+&$

,-$.&,'
!&()&$

!"#$%&'
$&%&*+&$

,-$.&,'
!&()&$

,-$.&,'
$&%&*+&$

$&!,$*%,'
!&()&$

-)-/,
!&()&$

-)-/,
$&%&*+&$

TP1P 2PSP

Figure 11: An adaptive program state machine

This section introduces Step (6), the approach to generate
executable prototypes and develop code based on the models
constructed in the previous section with the assistance of the
Renew tool suite [16].

377

Formal	
 methods	
 for	
 self-­‐adapMve	
 systems	
 	

Epifani	
 et	
 al.	
 2006	
 	

	

•  ProbabilisMc	
 model	

represents	
 reliability	
 of	

execuMon	
 flows	
 of	
 system	

•  ProbabiliMes	
 are	

dynamically	
 updated	

based	
 on	
 observaMons	

•  Formal	
 model	
 of	
 system	

behavior	
 at	
 runMme:	
 focus	

on	
 K	
 of	
 MAPE-­‐K	

	

I.	
 Epifani,	
 C.	
 Ghezzi,	
 R.	
 Mirandola,	
 and	
 G.	
 Tamburrelli.	
 2009.	
 Model	
 evoluMon	
 by	
 run-­‐Mme	
 parameter	

adaptaMon,	
 InternaMonal	
 Conference	
 on	
 SoBware	
 Engineering,	
 ICSE	
 2009	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

confidence in it. It is important to notice that, in KAMI, it is
not strictly necessary to model the whole system, but only
the sub-parts that are considered as critical.

Modeling

Initial

Estimates

Implementation

Bayesian

Estimation

Refined Estimates

Runtime

Data

QoS

Requirements

Figure 1. Methodology Scheme

A crucial factor of KAMI is the mechanism adopted to
transform run-time data extracted by running instances of
the implemented system into estimates of model parame-
ters. KAMI performs this task by exploiting Bayesian Es-
timation Theory [6]. An informal explanation that justifies
this approach is given in Section 5.1.

Summing up, let us consider again the example of a com-
ponent based system modeled with a QN. When the system
has been completely developed, tested, and deployed it is
possible to collect data from its running instances. We can
measure, for example, the customer interarrival time (CIT)
and through the Bayesian estimation we can estimate its dis-
tribution (CITD). Consequently, the QN model is updated
and checked at run time against the desired requirements.

3. A Running Example

This section illustrates a running example, which deals
with Web-service compositions, used in this paper to illus-
trate the KAMI approach. Web-service compositions (and
SOAs in general [28]) make an excellent case for the need
of keeping models alive at run time. A Web-service compo-
sition is an orchestration of Web services aimed at building
a new service by exploiting a set of existing ones. The or-
chestration is performed through a workflow language, such
as BPEL [1, 10], a de-facto standard. BPEL instances co-
ordinate services that are typically managed by external or-
ganizations, other than the owner of the service composi-
tion. This distributed ownership implies that the final func-
tional and non-functional properties of the composed ser-
vice rely on behaviors of third-party partners that influence
the obtained results. At design time, a model can be used

to guarantee that the QoS of a composite service satisfies
the requirements, based on the hypothesized QoS of each
composed external service. However, design-time verifica-
tion does not suffice. The declared QoS of composed ser-
vices may turn out not to be met in practice. In addition,
because of the decentralized nature of services and of mul-
tiple ownership, external services may undergo independent
and unanticipated changes, which may lead to violating the
global QoS requirements.

The running example we use in the paper is based on a
case study, illustrated in [3], which deals with a distributed
system for medical assistance. The application, called Tele-
Assistance (TA), consists in a BPEL process for remote
assistance of patients. Figure 2 illustrates the application,
in which a server runs the TA composite service. The de-
scription is provided graphically. A summary of BPEL con-
structs and the graphical notation we use to describe them
are summarized in the Appendix.

The process starts as soon as a Patient (PA) enables the
home device supplied by TA, which sends a message to
the process’ receive activity startAssistance. Then, it en-
ters an infinite loop: every iteration is a pick activity that
suspends the execution and waits for one of the following
three messages: (1) vitalParamsMsg, (2) pButtonMsg, or
(3) stopMsg. The first message contains the patient’s vital
parameters that are forwarded by the BPEL process to the
Medical Laboratory service (LAB) by invoking the opera-
tion analyzeData. The LAB is in charge of analyzing the
data and replies by sending a result value stored in a vari-
able analysisResult. A field of the variable contains a value
that can be: changeDrug, changeDoses or sendAlarm. The
latter message triggers the intervention of a First-Aid Squad
(FAS) composed of doctors, nurses, and paramedics, whose
task is to visit the patient at home in case of emergency. To
alert the squad, the TA process invokes the operation alarm
of the FAS. The message pButtonMsg caused by pressing
a panic button also generates an alarm sent to the FAS. Fi-
nally, the message stopMsg indicates that the patient may
decide to cancel the TA service.

4. Reliability Modeling via DTMCs

Different models may be used to reason about different
non-functional properties of a software architecture. All
such models require that certain parameters characterizing
the final running system should be specified. Although
the KAMI methodology and its prototype implementation
apply to any probabilistic non-functional quality attribute,
hereafter we focus on reliability [21, 20] and on models
based on DTMCs. KAMI also supports performance analy-
sis via QNs. Run-time adaptation of QN parameters can be
performed by applying the same statistical machinery we il-
lustrate for DTMCs. The next section introduces DTMCs.

3

Formal	
 methods	
 for	
 self-­‐adapMve	
 systems	
 	

Calinescu	
 et	
 al.	
 2011	

	

R.	
 Calinescu,	
 L.	
 Grunske,	
 M.	
 Kwiatkowska,	
 R.	
 Mirandola,	
 and	
 G.	
 Tamburrelli.	

Dynamic	
 QoS	
 Management	
 and	
 OpMmizaMon	
 in	
 Service-­‐Based	
 Systems,	

IEEE	
 TransacMons	
 on	
 SoBware	
 Engineering,	
 TSE	
 2011	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

•  ProbabilisMc	
 model	
 of	
 reliability	

and	
 performance	
 properMes	
 of	

service-­‐based	
 system	
 	

•  Requirements	
 specified	
 in	

probabilisMc	
 computaMon	
 tree	

logic	

•  Online	
 verificaMon	
 of	
 properMes	

using	
 Prism	

•  AdaptaMon	
 of	
 workflow	
 engine	
 	

(service	
 selecMon	
 +	
 resources)	
 	

•  AdaptaMon	
 logic	
 consists	
 of	
 set	
 of	

tools	
 that	
 are	
 glued	
 together	
 	

Formal	
 methods	
 for	
 self-­‐adapMve	
 systems	
 	

Ghezzy	
 et	
 al.	
 2013	
 	

	

•  Annotated	
 UML	
 diagram	
 models	

response	
 Mme,	
 energy	
 consumpMon	

and	
 usability	
 of	
 different	
 execuMon	

paths	
 of	
 the	
 system	

•  Diagram	
 is	
 automaMcally	
 translated	

to	
 Markov	
 decision	
 process	
 using	

Prism	

•  Interpreter	
 guides	
 the	
 execuMon	
 of	

the	
 system	
 using	
 the	
 model	
 	

•  CumulaMve	
 reward	
 is	
 used	
 to	
 select	

path	
 with	
 highest	
 uMlity	

•  AdaptaMon	
 logic	
 is	
 encoded	
 in	
 ad-­‐
hoc	
 interpreter	
 	

	

C.	
 Ghezzi,	
 L.S.	
 Pinto,	
 P.	
 SpoleMni,	
 G.	
 Tamburrelli:	
 Managing	
 non-­‐funcMonal	
 uncertainty	
 via	
 model-­‐driven	

adapMvity,	
 InternaMonal	
 Conference	
 on	
 SoBware	
 Engineering,	
 ICSE	
 2013	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

!!"#$%&'()
*%%+',

-. -/

001
001

2()343)5 67#

(a) Alternative Implementations.

!!"#$%&'()**
+!"#$%&'()*+"
,$-#$)*%.

/) /-

001
001

2%34543+ 678

(b) Optional Functionality.

!

"#
$%&
%$'

(
)
*

!+,-./0.12#3445

%

445""#$%&'()*++
,+,0.#67812',
-./,0.12#3

91

9/

(c) Composition of MDPs.

!

"

#$%&'(")
*%+
,%+

+'

-. / 0

#$%'(1)
*%2
,%+

#$%'(3)
*%2
,%+

#$%'(")
*%+
,%+

#$%'(1)
*%+
,%+

#$%'(4)
*%2
,%+

#$%2)
*%"
,%+

4 5

#$%'(1)
*%2
,%+

67

68

9

#$%'(1)
*%2
,%+

#$%'(3)
*%2
,%+

'(1

'(!

17

+2

:8

; +"

#$%')
*%+
,%'

+ 27
'(-

'("

37

38

#$%')
*%+
,%'

<

#$%')
*%+
,%'

#$%')
*%+
,%'

= ++

#$%')
*%2
,%+

(d) ShopReview Embedded Model.

Fig. 3. Translation Process.

responds to the automaticProductLookup implementation (see

Listing 1), is annotated with its impact in terms of response

time (i.e., 0.5s), energy consumption (i.e., 2), and usability

(i.e., 1). Since symbolic state are artificially generated by the

translation process they are annotated with neutral values:

RT = 0, E = 0, U = 0. Notice that, by construction, the

obtained EM represents all the possible execution flows of the

system in terms of target implementations. Indeed, starting

from its initial state, the MDP has multiple alternative paths

towards the final state. The translation process performed by

the Generator hides the complexity of MDPs to developers.

A formal description of the automatic translation algorithm is

not given here for space reasons. It is based on the automatic

translation of an annotated Activity Diagram into a Markov

process that was presented in our previous work (i.e., [13]).

C. Model Manipulation

The annotations attached to the states of the EM represent

the impact of the corresponding implementation on quality

metrics. Formally, this information corresponds to rewards
in the MDP formalisms (see the Appendix). It can be used

to compute the minimum and maximum cumulative rewards

(indicated as minR(s) and maxR(s)) from each state s to the

final state in the model and for each quality metric. The com-

putation of such cumulative rewards may be arbitrarily com-

plex because of three characteristics of the model: (1) loops,

(2) probabilities attached to transitions, (3) a large number of

alternative paths. We rely on a probabilistic model checker,

such as PRISM [14], to compute them. Given these premises,

we manipulate the model by replacing impact numbers at-

tached to each state s with an interval �minR(s),maxR(s)�
for every requirement metric of the system. It is important to

notice that such intervals represent forecasts of the impacts

necessary to complete the execution (i.e., reach the final state)

starting from a specific state s of the model. At execution

time, such values are used by the Interpreter to select the most

appropriate path towards the final state, as illustrated in Section

III-D. Figure 4 illustrates the cumulative rewards obtained by

exploiting PRISM for some states of the EM. Notice that,

when cumulative rewards are computed for response time,

all the states characterized by user interaction (i.e., whose

corresponding implementations are annotated with @UI) are

considered as final states of the EM together with the original

final states. Indeed, the requirements concerning response time

(e.g., R1) predicate over the portions of the system in which

the computation occurs autonomously, i.e., without user input.

!"

!#

$%%%

&'()*%+,-.%./
0()1,-+/
2()3,-4/

&'()*%5,-.%3/
0()1,-+/
2()3,-4/

6

&'()*,-*%5/
0()3,-4/
2().,-3/

%%%

Fig. 4. Model Execution Example.

Manipulating the SR Model. At this stage, we manipulate

each state s of the model in Figure 3(d) by replacing impact

numbers with intervals in the form �minR(s),maxR(s)�, for

every requirement metric, obtained by running the probabilis-

tic model checker, as explained above. For example, let us

focus on state 6a and usability. In this case the model checker

yields the following values: �4; 6�. These values indicate that

an execution reaching state 6a will have an additional usability

impact value in the interval �4; 6� to reach the final state.

Similarly, for the response time and energy consumption we

obtain �2.9; 4.1� and �8; 11�, respectively.

37

!"#"$%&"'
()*+,-./#/.0+!/12'134 53&$"3"6.1./%64

!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!

"#$#%&'#(

)$*+,#(

#-#./'#(

/(#(

&$$+'&'#(0#()"$(

/(#(

738"99"9+)%9"$

::::: :
56."'&'"."'

;<5=)

/(#(

>"6"'1.%'

Fig. 1. The ADAM Approach.

automaton, called Embedded Model (EM). In the EM, each

state represents an implementation of an abstract functionality

of the system, while paths represent all the possible execution

flows. The Interpreter is, instead, in charge of executing the

system by navigating the automaton state-by-state and by

invoking the chosen target implementations associated to the

states it traverses. In particular, it is responsible for driving and

adapting the execution by choosing among alternative paths

of the automaton in order to maximize the system’s ability

to meet its non-functional requirements. By this we mean

that the Interpreter first measures the effects of non-functional

uncertainty (e.g., the response time of invoked functionalities)

and consequently chooses the most convenient path in the

EM to maximize the likelihood of meeting all the system’s

requirements. This way, if the Interpreter detects that the

current execution is slower w.r.t. a certain performance re-

quirement, it may autonomously decide to drive the execution

by choosing a specific (fast) path in the EM that guarantees the

compliance with the performance requirement. The approach

comprises the following steps: (1) Modeling, (2) Transforma-

tion, (3) Model Manipulation, and (4) Execution. Hereafter,

we describe each of them in detail. For each step, we also

illustrate it referring to the SR example.

A. Modeling

As previously introduced, the system is initially conceived

in terms of abstract functionalities and modeled by one or more

UML Activity Diagrams, which organize them in workflows.

For each abstract functionality, engineers also provide one or

more corresponding alternative target implementations. The

design methodology to derive the set of target concrete func-

tionalities for each abstract one, given the overall requirements

and an uncertainty mitigation policy, is out of scope of the

present paper. We observe, however, that designing systems

in terms of alternative implementations corresponds to an

approach already used for complex software systems, even

if informally. For example, in mobile applications, the user

location is typically obtained by relying on two alternatives:

(1) the GPS sensor or (2) the NPS. Clearly, every abstract

functionality needs at least one corresponding implementation.

In addition, while modeling, engineers are allowed to annotate

a subset of the abstract functionalities as Optional. Usually,

optional functionalities are not essential for the correctness of

!"#

$!"#$%&%"
'()*+,+&+%- %!".-/*&"#0+(1

&!"#0%2*(&"
3%%4*/

'!"516"7180($ (!"3%(89"
7180($

%%!"#*69+,$"
#0+(1

))*+,-./0122
%!!":1,*9&
;0210+-<

#!"3%(89"
:1(%<-+&+%-

3!":1=%&1"
:1(%<-+&+%-

450678,.9.:86;

))*+,-./0122
<!"71(%-280>"
516"7180($

!"= !"3
,>8? @016?

=!"3%(8&+%-

4>?:.A/-B?C;

!"(
,>8?@016?

%#!"7$%?@8/

%$!"A#7

3%(8&+%-
BA#7"'9&10-8&+C1D

Fig. 2. ShopReview UML Activity Diagram.

the final result, but may, however, affect usability. If necessary,

they are sacrificed to accomplish more important goals. As

illustrated in the example, each non-functional requirement

predicates over a certain non-functional metric. As a conse-

quence, each implementation is annotated with the impact it

has w.r.t. these metrics. For example, an implementation of

an abstract functionality with an expected response time of

2 seconds is annotated with responseTime=2s. Concrete

implementations that require user interaction cannot be an-

notated with an impact on response time, since they depend

on the user’s think time. They are therefore annotated with

@UI, whose meaning will become clear later on. Notice that

the annotation process occurs for each requirement metric on

all the implementations. Finally, ADAM requires engineers to

annotate each branch of decision nodes in the UML Activity

Diagram with the expected probability that an execution of the

system may take that branch. When not specified, branches are

considered to have the same probability.

Modeling the SR Application. The modeling step applied to

the SR example may produce the Activity Diagram illustrated

in Figure 2. For each abstract functionality, one or more con-

crete implementations are provided. For instance, concerning

ProductLookup, which translates a barcode into a product

name, SR relies on a remote service (e.g., searchupc.com) as

one of the possible implementations. Alternatively, the appli-

cation may ask the user to directly provide the product’s name.

As for searching the Web for more convenient prices, SR

relies on a primary remote service (e.g., shopzilla.com) and on

complementary services, represented by the abstract function-

alities WebSearch and SecondaryWebSearch, respectively. Note

that the SecondaryWebSearch is annotated as an Optional

functionality to represent the fact that it may be omitted at run-

time, if necessary. Similarly, the ResultOrdering functionality,

which sorts the results of WebSearch and LocalSearch by price

and distance, respectively, has been annotated as optional.

Concrete implementations are provided by Java methods

using the ad-hoc annotation @Implementation to refer to

the abstract functionality they implement. Moreover, the anno-

tation @Impact is used to specify the impact the implemen-

35

!!"#$%&'()
*%%+',

-. -/

001
001

2()343)5 67#

(a) Alternative Implementations.

!!"#$%&'()**
+!"#$%&'()*+"
,$-#$)*%.

/) /-

001
001

2%34543+ 678

(b) Optional Functionality.

!

"#
$%&
%$'

(
)
*

!+,-./0.12#3445

%

445""#$%&'()*++
,+,0.#67812',
-./,0.12#3

91

9/

(c) Composition of MDPs.

!

"

#$%&'(")
*%+
,%+

+'

-. / 0

#$%'(1)
*%2
,%+

#$%'(3)
*%2
,%+

#$%'(")
*%+
,%+

#$%'(1)
*%+
,%+

#$%'(4)
*%2
,%+

#$%2)
*%"
,%+

4 5

#$%'(1)
*%2
,%+

67

68

9

#$%'(1)
*%2
,%+

#$%'(3)
*%2
,%+

'(1

'(!

17

+2

:8

; +"

#$%')
*%+
,%'

+ 27
'(-

'("

37

38

#$%')
*%+
,%'

<

#$%')
*%+
,%'

#$%')
*%+
,%'

= ++

#$%')
*%2
,%+

(d) ShopReview Embedded Model.

Fig. 3. Translation Process.

responds to the automaticProductLookup implementation (see

Listing 1), is annotated with its impact in terms of response

time (i.e., 0.5s), energy consumption (i.e., 2), and usability

(i.e., 1). Since symbolic state are artificially generated by the

translation process they are annotated with neutral values:

RT = 0, E = 0, U = 0. Notice that, by construction, the

obtained EM represents all the possible execution flows of the

system in terms of target implementations. Indeed, starting

from its initial state, the MDP has multiple alternative paths

towards the final state. The translation process performed by

the Generator hides the complexity of MDPs to developers.

A formal description of the automatic translation algorithm is

not given here for space reasons. It is based on the automatic

translation of an annotated Activity Diagram into a Markov

process that was presented in our previous work (i.e., [13]).

C. Model Manipulation

The annotations attached to the states of the EM represent

the impact of the corresponding implementation on quality

metrics. Formally, this information corresponds to rewards
in the MDP formalisms (see the Appendix). It can be used

to compute the minimum and maximum cumulative rewards

(indicated as minR(s) and maxR(s)) from each state s to the

final state in the model and for each quality metric. The com-

putation of such cumulative rewards may be arbitrarily com-

plex because of three characteristics of the model: (1) loops,

(2) probabilities attached to transitions, (3) a large number of

alternative paths. We rely on a probabilistic model checker,

such as PRISM [14], to compute them. Given these premises,

we manipulate the model by replacing impact numbers at-

tached to each state s with an interval �minR(s),maxR(s)�
for every requirement metric of the system. It is important to

notice that such intervals represent forecasts of the impacts

necessary to complete the execution (i.e., reach the final state)

starting from a specific state s of the model. At execution

time, such values are used by the Interpreter to select the most

appropriate path towards the final state, as illustrated in Section

III-D. Figure 4 illustrates the cumulative rewards obtained by

exploiting PRISM for some states of the EM. Notice that,

when cumulative rewards are computed for response time,

all the states characterized by user interaction (i.e., whose

corresponding implementations are annotated with @UI) are

considered as final states of the EM together with the original

final states. Indeed, the requirements concerning response time

(e.g., R1) predicate over the portions of the system in which

the computation occurs autonomously, i.e., without user input.

!"

!#

$%%%

&'()*%+,-.%./
0()1,-+/
2()3,-4/

&'()*%5,-.%3/
0()1,-+/
2()3,-4/

6

&'()*,-*%5/
0()3,-4/
2().,-3/

%%%

Fig. 4. Model Execution Example.

Manipulating the SR Model. At this stage, we manipulate

each state s of the model in Figure 3(d) by replacing impact

numbers with intervals in the form �minR(s),maxR(s)�, for

every requirement metric, obtained by running the probabilis-

tic model checker, as explained above. For example, let us

focus on state 6a and usability. In this case the model checker

yields the following values: �4; 6�. These values indicate that

an execution reaching state 6a will have an additional usability

impact value in the interval �4; 6� to reach the final state.

Similarly, for the response time and energy consumption we

obtain �2.9; 4.1� and �8; 11�, respectively.

37

Summary	
 SOTA	

•  Increasing	
 a8enMon	
 for	
 formal	
 models	
 at	

runMme	
 to	
 provide	
 guarantees	
 of	
 adaptaMon	
 	

•  ProbabilisMc	
 approaches	
 dominate	
 	

•  Focus	
 on	
 formal	
 models	
 of	
 system,	

environment	
 and	
 goals	
 (K	
 of	
 MAPE-­‐K)	

•  No	
 systemaMc	
 formalizaMon	
 and	
 verificaMon	
 of	

of	
 adaptaMon	
 funcMons	
 (MAPE	
 of	
 MAPE-­‐K)	

•  Limited	
 support	
 for	
 unpredicted	
 changes	

Overview	

•  Architecture-­‐based	
 self-­‐adaptaMon	
 vs.	
 control-­‐
based	
 self-­‐adaptaMon	

•  Reference	
 approaches	
 for	
 architecture-­‐based	

self-­‐adaptaMon	

•  Formal	
 methods	
 for	
 self-­‐adapMve	
 systems	

•  AcMve	
 formal	
 methods	
 for	
 self-­‐adaptaMon	

•  Wrap	
 up	

StarMng	
 points	
 	

•  Formalize	
 adaptaMon	
 funcMons	
 to	
 provide	

guarantees	
 about	
 adaptaMon	
 capabiliMes	

– E.g.,	
 does	
 analysis	
 detect	
 errors	
 correctly?	
 	

– Are	
 adaptaMons	
 performed	
 in	
 order	
 of	
 selected	

plan?	
 	

•  Support	
 unanMcipated	
 changes	

– Requires	
 support	
 for	
 adaptaMons	
 of	
 adaptaMon	

funcMons	

AcMvFORMS	

AcMve	
 formal	
 models	
 for	
 self-­‐adaptaMon	

•  Formal	
 model	
 of	
 complete	
 MAPE-­‐K	
 loop	

•  Model	
 is	
 directly	
 executed	
 to	
 adapt	
 the	

managed	
 system	

•  Model	
 directly	
 supports	
 online	
 verificaMon	
 of	

goal	
 saMsfacMon/violaMon	

•  Model	
 can	
 be	
 adapted	
 at	
 runMme	
 to	
 support	

unanMcipated	
 changes	
 	
 	

h8p://homepage.lnu.se/staff/daweaa/AcMvFORMS.htm	
 (from	
 October	
 15,	
 2013)	

Focus	

•  3	
 layered	
 model	
 of	
 Kramer	
 &	
 Magee	
 	

–  Component	
 control	
 (layer	
 1),	
 change	
 management	
 (2),	

goal	
 management	
 (3)	

•  Focus	
 on	
 layer	
 2	
 and	
 3	

– AssumpMon:	
 managed	
 system	
 is	
 equipped	
 with	

required	
 sensors	
 and	
 effectors	
 	

–  InstrumentaMon	
 of	
 managed	
 system	
 is	
 research	

subject	
 in	
 its	
 own	
 right	

•  Case	
 study:	
 logisMc	
 mulM-­‐robot	
 system	

!"#$%&'(")*+,-.,"$"/*0%+1(/$+/!%$*("*%$2.,"2$*/,*"$3*
2/0/$2* %$.,%/$#* 4'* /10/* &0'$%* ,%* ("* %$2.,"2$* /,* "$3*
,45$+/(6$2* %$7!(%$#*,8* /1$* 2'2/$-* ("/%,#!+$#* 8%,-* /1$*
&0'$%*04,6$9*:1(2*&0'$%*+0"*("/%,#!+$*"$3*+,-.,"$"/2;*
%$+%$0/$* 80(&$#* +,-.,"$"/2;* +10")$* +,-.,"$"/*
("/$%+,""$+/(,"2* 0"#* +10")$* +,-.,"$"/* ,.$%0/(")*
.0%0-$/$%29* </* +,"2(2/2* ,8* 0* 2$/* ,8* .&0"2* 31(+1* 0%$*
0+/(60/$#*("*%$2.,"2$*/,*+10")$2*,8*/1$*,.$%0/(")*2/0/$*
,8* /1$* !"#$%&'(")* 2'2/$-9* =,%* $>0-.&$?* 31$"* 0*
+,-.,"$"/* 80(&2?* +10")$* -0"0)$-$"/* +0"* 88+/* 0*
%$.0(%*$(/1$%*4'*+10")(")*+,-.,"$"/*+,""$+/(,"2*,%*4'*
+%$0/(")* "$3* +,-.,"$"/29* <"* %,4,/(+* 2'2/$-2?* /1(2*
&0'$%*102*4$$"*(-.&$-$"/$#*("*0*"!-4$%*,8*30'2*8%,-*
+,"#(/(,"0&* 2$7!$"+(")* 2'2/$-2* @ABC* /,* 2$/2* ,8* 2/0/$*
-0+1("$29*D,%E* ("* /1$*"$/3,%E*-0"0)$-$"/*0%$0*102*
.%,#!+$#* &0")!0)$2* 2!+1* 02* F,"#$%* @AGC* 31(+1*
.$%8,%-*0*2(-(&0%*8!"+/(,"*/,*/1$*.&0""(")*&0")!0)$2*("*
/1$*+,"/$>/*,8*2'2/$-29*F,"#$%*(2*22"/(0&&'*0*&0")!0)$*
31(+1* $>$+!/$* 0+/(,"2* ("* %$2.,"2$* /,* %$+,)"(2(")*
H.,22(4&$*+,-.&$>I*6"/29*:1$*$22$"/(0&*+10%0+/$%(2/(+*
,8*/1(2*+10")$*-0"0)$-$"/*&0'$%*(2*/10/*(/*+,"2(2/2*,8*0*
2$/* ,8* .%$J2.$+(8($#* .&0"2* 31(+1* 0%$* 0+/(60/$#* ("*
%$2.,"2$* /,* 2/0/$* +10")$* 8%,-* /1$* 2'2/$-*4$&,39*:1$*
&0'$%* +0"* %$2.,"#* 7!(+E&'* /,* "$3* 2(/!0/(,"2* 4'*
$>$+!/(")*310/*0%$*("*$22$"+$*.%$J+,-.!/$#*.&0"29*<8*0*
2(/!0/(,"* (2* %$.,%/$#* 8,%* 31(+1* 0* .&0"* #,$2* ",/* $>(2/*
/1$"* /1(2* &0'$%*-!2/* ("6,E$* /1$* 2$%6(+$2*,8* /1$*1()1$%*
.&0""(")*&0'$%9*<"*0##(/(,"?*"$3*),0&2*8,%*0*2'2/$-*3(&&*
("6,&6$*"$3*.&0"2*4$(")*("/%,#!+$#*("/,*/1(2*&0'$%9**

!"#!$%&'()&*&+,-,*.(
:1$*!..$%-,2/*&0'$%*,8*K0/L2*/1%$$*&0'$%*0%+1(/$+/!%$*(2*
/1$* #$&(4$%0/(,"* &0'$%9* :1(2* &0'$%* +,"2(2/2* ,8* /(-$*
+,"2!-(")*+,-.!/0/(,"2*2!+1*02*.&0""(")*31(+1*/0E$2*
/1$* +!%%$"/* 2/0/$* 0"#* 0* 2.$+(8(+0/(,"* ,8* 0* 1()1J&6&*
),0&* 0"#* 0//$-./2* /,* .%,#!+$* 0* .&0"* /,* 0+1(6* /10/*
),0&9* M"* $>0-.&$* ("* %,4,/(+2* 3,!&#* 4$*)(6$"* /1$*
+!%%$"/* .,2(/(,"* ,8* 0* %,4,/* 0"#* 0* -0.* ,8* (/2*
$"6(%,"-$"/*.%,#!+$*0*%,!/$*.&0"*8,%*$>$+!/(,"*4'*/1$*
2$7!$"+(")*&0'$%9*N10")$2*("*/1$*$"6(%,"-$"/?*2!+1*02*
,42/0+&$2* /10/* 0%$* ",/* ("* /1$* -0.?* 3(&&* ("6,&6$* %$J
.&0""(")9* :1$* %,&$* ,8* /1$* $7!(60&$"/* &0'$%* ("* 0* 2$&8J
-0"0)$#* 2'2/$-* (2* K,0&* O0"0)$-$"/9* :1(2* &0'$%*
.%,#!+$2* +10")$* -0"0)$-$"/* .&0"2* ("* %$2.,"2$* /,*
%$7!$2/2* 8%,-* /1$* &0'$%* 4$&,3* 0"#* ("* %$2.,"2$* /,* /1$*
("/%,#!+/(,"*,8*"$3*),0&29*=,%*$>0-.&$?* (8* /1$*),0&* ("*
/,*-0("/0("* 2,-$* 0%+1(/$+/!%0&* .%,.$%/'* 2!+1* 02* /%(.&$*
%$#!"#0"+'* 8,%* 0&&* 2$%6$%2?* /1(2* &0'$%* +,!&#* 4$*
%$2.,"2(4&$* 8,%* 8("#(")* /1$* %$2,!%+$2* ,"* 31(+1* /,*
+%$0/$* "$3* +,-.,"$"/2* 08/$%* 80(&!%$* 0"#* .%,#!+(")* 0*
.&0"* 02* 1,3* /,* +%$0/$* 0"#* ("/$)%0/$* /1$2$* "$3*
+,-.,"$"/2* /,* /1$*+10")$*-0"0)$-$"/*&0'$%9*</*+,!&#*
4$* %$2.,"2(4&$* 8,%* #$+(#(")* /1$* ,./(-0&* .&0+$-$"/* ,8*
2$%6$%2* 8,%* &,0#* 40&0"+(")* .!%.,2$29* M2* 3$* 3(&&*

0##%$22* 8!%/1$%* ("* /1$* "$>/* 2$+/(,"* /1$%$* 0%$* -0"'*
%$2$0%+1* (22!$2*1$%$*02* /,*1,3* /,* %$.%2"/*1()1* &6&*
2'2/$-*),0&2?* 1,3* /,* 2'"/1$2(P$* +10")$*-0"0)$-$"/*
.&0"2* 8%,-* /1$2$*),0&2* 0"#* 1,3*)$"$%0&* ,%* #,-0("*
2.$+(8(+*/1(2*&0'$%*21,!&#*4$9*

=()!%$* A* 2!--0%(2$2* ,!%* .%,.,2$#* /1%$$* &0'$%*-,#$&*
8,%* 0* 2$&8* -0"0)$#* 2'2/$-* 8,&&,3(")* K0/L2* 3,%E* ,"*
0%+1(/$+/!%$2*8,%*%,4,/(+*2'2/$-29*:1$*.%("+(.0&*+%(/$%(0*
8,%* .&0+(")* 8!"+/(,"* ("* #(88$%$"/* &0'$%2* ("* K0/L2*
0%+1(/$+/!%$*(2*,"$*,8*/(-$*2+0&$*0"#*/1(2*3,!&#*2$$-*/,*
0..&'*$7!0&&'*3$&&*/,*2$&8*-0"0)$#*2'2/$-29*<--$#(0/$*
8$$#40+E*0+/(,"2*0%$*0/*/1$*&,3$2/*&$6$&*0"#*/1$*&,")$2/*
0+/(,"2* %$7!(%(")* #$&(4$%0/(,"* 0%$* 0/* /1$* !..$%-,2/*
&6&9* D$* 3,!&#* $-.102(P$* /10/* 3$* #,* ",/* +,"2(#$%*
/1(2* 0"* (-.&$-$"/0/(,"* 0%+1(/$+/!%$* 4!/* %0/1$%* 0*
+,"+$./!0&* ,%* %$8$%$"+$* 0%+1(/$+/!%$* 31(+1* (#$"/(8($2*
/1$* "$+$220%'* 8!"+/(,"0&(/'* 8,%* 2$&8* -0"0)$-$"/9* D$*
3(&&* !2$* (/* ("* /1$* "$>/* 2$+/(,"* /,* ,%)0"(2$* 0"#* 8,+!2*
#(2+!22(,"* ,8* /1$* %$2$0%+1* +10&&$")$2* .%$2$"/* 4'* 2$&8*
-0"0)$-$"/9*

*

"#$%!
&$'$()*)'+

,-$'()!
&$'$()*)'+

,#*.#')'+!
,#'+/#%

!"#"$%

&'#()*+,-"./(%

!" !#

$" $#

&'#()*+01#(%

01#(+2*3$*%"

%

%& %'
"#$%!
&$'$()*)'+

,-$'()!
&$'$()*)'+

,#*.#')'+!
,#'+/#%

!"#"$%

&'#()*+,-"./(%

!" !#

$" $#

&'#()*+01#(%

01#(+2*3$*%"

%

%& %'

*
/0+12,(3(4(562,,(7&8,2(92:60.,:.12,()%;,'(<%2(

(=,'<>)&*&+,-,*."(

(

#! ?,@,&2:6(A@@1,@(
<"* /1$* .%$6(,!2* 2$+/(,"* 3$* ,!/&("$#* 0* /1%$$* &0'$%*
0%+1(/$+/!%$* -,#$&* 31(+1* (2* ("/$"#$#* 02* 0* 8,%-* ,8*
%8%$"+$* -,#$&* %0/1$%* /10"* 02* 0*)!(#$* /,* 1,3* 2$&8*
-0"0)$#* 2,8/30%$* 21,!&#* 4$* (-.&$-$"/$#9* <"* /1(2*
2$+/(,"?*3$*!2$*/1$*-,#$&*/,*2/%!+/!%$*/1$*.%$2$"/0/(,"*
,8* /1$* %$2$0%+1* (22!$2* 3$* 2$$* .%2"/$#* 4'* /1$*
+10&&$")$* ,8* (-.&$-$"/(")* 2$&8J-0"0)$#* 2'2/$-29* :,*
)%,!"#* /1(2* #(2+!22(,"?* 3$* #%03* $>0-.&$2* 8%,-* /1$*
3,%E*3(/1*31(+1*3$* 0%$*-,2/* 80-(&(0%* Q* "0-$&'* ,!%*
,3"9*

#"3!B%-C%*,*.(B%*.2%'(7&8,2(
D$* 0%$* +,"+$%"$#* 3(/1* -0"0)$-$"/* 0/* /1$*
0%+1(/$+/!%0&* &$6$&* 31$%$* 3$* +,"2(#$%* 0* 2'2/$-* /,*

Case	
 study	

Approach	

Approach	

•  AcMve	
 model	
 	

–  Is	
 a	
 formally	
 verified	
 model	
 	

–  Realizes	
 a	
 MAPE-­‐K	
 loop	
 	

–  To	
 adapt	
 the	
 managed	
 system	
 	

•  Goal	
 management	
 	

– Monitors	
 the	
 acMve	
 model	

–  Can	
 adapt	
 the	
 acMve	
 model	
 (e.g.,	
 to	
 improve	
 it	
 or	
 deal	
 with	

a	
 parMcular	
 adaptaMon	
 problem)	
 	

•  Engineer/Admin	
 	

–  Can	
 monitor	
 goal	
 saMsfacMon/violaMon	

–  Can	
 change	
 the	
 acMve	
 model,	
 verify	
 and	
 deploy	
 it,	
 to	

manage	
 (new)	
 goals	
 using	
 goal	
 management	

RealizaMon	

Goal	
 Management	
 Interface	

Virtual	
 machine	

•  Transforms	
 a	
 formal	
 model	
 (network	
 of	
 Mmed	

automata)	
 into	
 a	
 graph	
 representaMon	
 	

•  Executes	
 that	
 model	
 	

•  Can	
 adapt	
 the	
 current	
 model	
 at	
 runMme	

•  Can	
 detect	
 and	
 noMfy	
 goal	
 violaMons	

Levels	
 of	
 adaptaMon	

•  Level	
 1:	
 acMve	
 model	
 adapts	
 the	
 managed	

system	

– Close	
 temporally	
 a	
 lane	
 in	
 the	
 warehouse	
 for	

maintenance	
 	
 	

•  Level	
 2:	
 adapt	
 the	
 acMve	
 model	
 (adapt	
 MAPE)	

– Add	
 a	
 new	
 drop	
 locaMon	
 in	
 the	
 warehouse	

Level 1 adaptations
Close temporally a lane in the warehouse for maintenance

-­‐	
 Adapt	
 the	
 robot	
 to	
 prevent	
 it	
 from	

using	
 a	
 closed	
 lane	
 	

Level 1 adaptations
Close temporally a lane in the warehouse for maintenance

Level 2 adaptations
Add a new drop location in the warehouse

-­‐	
 Add	
 new	
 part	
 of	
 the	
 map	
 for	
 the	
 robot	

-­‐	
 Creates	
 new	
 deadlock	
 situaMons	
 when	

certain	
 lanes	
 are	
 disabled	

-­‐	
 Requires	
 adding	
 new	
 representaMon	
 in	
 K	

and	
 adaptaMons	
 of	
 MAPE	
 funcMons	

Level 2 adaptations
Deal with new deadlock threat (close additional lane): e.g., update planner

enableLane()

planningOngoing()

planned()

disableLane() && !waitRequired()

execute[RiD]!

planning[RiD]?

planEnabling() planDisabling()

planned()

planningOngoing()

disableLane()

&& !waitRequired()

laneDisabled()

&& posUpdated()

execute[RiD]!

enableLane()

remRequest()

&& !waitRequired()

addRequest()

planning[RiD]?

planEnabling()

planDisabling(),

lockExtraNode()

planAddition()

planRemoval()

lockExtraNode()

Level 2 adaptations
Add a new drop location in the warehouse

AcMvFORMS	
 summary	

•  Formal	
 acMve	
 model	
 guarantees	
 verified	

properMes	
 of	
 the	
 adapMon	
 process	

•  AcMve	
 model	
 directly	
 executes	
 the	
 adaptaMon:	

no	
 coding,	
 no	
 model	
 transformaMons	

•  AdaptaMon	
 of	
 adaptaMon	
 funcMons:	

lightweight	
 process	
 to	
 add	
 new	
 goals	
 	

•  Online	
 detecMon	
 of	
 goal	
 violaMons	

Tradeoffs	

•  Expert	
 knowledge	
 to	
 design	
 and	
 change	
 the	

formal	
 models	
 	

•  Modeling	
 is	
 limited	
 by	
 the	
 expressive	
 power	
 of	

the	
 modeling	
 language	
 	

•  Language	
 might	
 not	
 be	
 appropriate	
 to	
 model	

adapMon	
 logic	
 for	
 parMcular	
 types	
 of	
 systems	
 	
 	

•  Possible	
 performance	
 overhead	
 	

Paves	
 the	
 way	
 for	
 future	
 research	

•  Domain	
 specific	
 design	
 primiMves	
 to	
 support	

the	
 designer	
 	

•  Different	
 modeling	
 languages	
 (e.g.	

probabilisMc	
 automata	
 to	
 model	
 domain)	
 	

•  CoordinaMon	
 between	
 AcMve	
 Models	
 in	

decentralized	
 se|ng	

•  AutomaMon	
 goal	
 management	
 by	
 learning	
 	

•  Scalable	
 runMme	
 verificaMon	
 	

	

	

Overview	

•  Architecture-­‐based	
 self-­‐adaptaMon	
 vs.	
 control-­‐
based	
 self-­‐adaptaMon	

•  Reference	
 approaches	
 for	
 architecture-­‐based	

self-­‐adaptaMon	

•  Formal	
 methods	
 for	
 self-­‐adapMve	
 systems	

•  AcMve	
 formal	
 methods	
 for	
 self-­‐adaptaMon	

•  Wrap	
 up	

Wrap	
 up:	
 Goals	
 of	
 this	
 tutorial	

•  Understand	
 the	
 noMon	
 of	
 self-­‐adaptaMon	
 	

•  Get	
 familiar	
 with	
 references	
 approaches	
 for	

architecture-­‐based	
 self-­‐adaptaMon	

•  Get	
 familiar	
 with	
 state	
 of	
 the	
 art	
 in	
 formal	

methods	
 for	
 self-­‐adapMve	
 systems	
 	

•  Understand	
 the	
 challenges	
 in	
 formal	
 methods	

at	
 runMme	
 for	
 self-­‐adapMve	
 systems	

Wrap	
 up	

Understand	
 the	
 noMon	
 of	
 self-­‐adaptaMon	

•  Self-­‐adaptaMon	
 is	
 moMvated	
 by	
 the	
 need	
 to	
 deal	
 with	

design	
 Mme	
 uncertainMes	
 	

•  Two	
 key	
 families	
 are	
 	

–  Control-­‐based	
 self-­‐adaptaMon:	
 controller	
 design	
 and	

analysis	
 based	
 on	
 control	
 theoreMc	
 foundaMon	

–  Architecture-­‐based	
 self-­‐adaptaMon:	
 feedback	
 loop	
 reasons	

about	
 self-­‐model	
 and	
 adapts	
 system	
 when	
 needed	
 	
 	

•  SeparaMon	
 between	
 managed	
 and	
 managing	
 system	

–  Concerns	
 of	
 managed	
 system	
 are	
 about	
 the	
 domain	
 at	

hand	
 	

–  Concerns	
 of	
 managing	
 system	
 are	
 about	
 system	

Wrap	
 up	

Get	
 familiar	
 with	
 reference	
 approaches	
 for	

architecture-­‐based	
 self-­‐adaptaMon	

•  MAPE-­‐K	
 reference	
 model	

– MAPE:	
 primary	
 funcMons	
 to	
 realize	
 self-­‐adaptaMon	

–  K:	
 domain	
 models	
 	

•  Rainbow	
 framework	
 maps	
 reference	
 model	
 to	

concrete	
 architecture	
 and	
 implementaMon	

•  3	
 layer	
 model	
 of	
 Kramer	
 and	
 Magee	

–  Component	
 control	
 –	
 adaptaMon	
 management	
 –	
 goal	

management	
 	

•  FORMS:	
 rigorous	
 specified	
 model	
 that	
 integrates	

different	
 perspecMves	
 on	
 self-­‐adaptaMon	
 	

Wrap	
 up	

Get	
 familiar	
 with	
 state	
 of	
 the	
 art	
 formal	

methods	
 in	
 self-­‐adapMve	
 systems	

•  VerificaMon	
 at	
 construcMon	
 Mme	
 to	
 provide	

guarantees	
 about	
 system	
 goals	

•  Model	
 driven	
 approaches	
 to	
 guarantee	

conformance	
 between	
 models	
 and	

implementaMon	

•  Recent	
 years	
 a	
 clear	
 trend	
 towards	
 the	

applicaMon	
 of	
 formal	
 methods	
 at	
 runMme	

•  DominaMng	
 focus	
 on	
 probabilisMc	
 models	
 of	
 the	

domain	

•  Main	
 focus	
 on	
 “parametric	
 uncertainty”	
 (e.g.,	

reliability	
 of	
 services	
 change	
 over	
 Mme)	

Wrap	
 up	

Understand	
 the	
 challenges	
 on	
 formal	
 methods	

at	
 runMme	
 for	
 self-­‐adapMve	
 systems	

•  Guaranteeing	
 domain	
 goals	
 under	
 uncertainty	

is	
 one	
 part	
 of	
 assurances	
 of	
 self-­‐adaptaMon	
 	

•  Guaranteeing	
 correct	
 adaptaMon	
 behavior	
 is	

the	
 other	
 part	
 (lack	
 of	
 a8enMon	
 so	
 far)	

•  Need	
 for	
 soluMons	
 that	
 deal	
 with	
 “structural	

uncertainty”	
 	

–  i.e.,	
 unanMcipated	
 change;	
 e.g.,	
 change	
 goals	
 	

•  Scalable	
 runMme	
 verificaMon	

Bibliography	
 	

•  B.	
 Cheng	
 et	
 al.,	
 SoBware	
 Engineering	
 for	
 Self-­‐AdapMve	
 Systems:	
 A	
 Research	
 Roadmap,	
 Lecture	
 Notes	
 in	

Computer	
 Science,	
 vol.	
 5525,	
 2009	
 	

•  P.	
 Oreizy,	
 M.	
 Gorlick,	
 R.	
 Taylor,	
 D.	
 Heimbigner,	
 G.	
 Johnson,	
 N.	
 Medvidovic,	
 A.	
 Quilici,	
 D.	
 Rosenblum,	
 and	
 A.	

Wolf,	
 An	
 Architecture-­‐Based	
 Approach	
 to	
 Self-­‐AdapMve	
 SoBware,	
 IEEE	
 Intelligent	
 Systems,	
 May/June	
 1999	

•  Kephart	
 and	
 Chess,	
 The	
 vision	
 of	
 autonomic	
 CompuMng,	
 IEEE	
 Computer,	
 January	
 2003	

•  D.	
 Garlan,	
 S-­‐W.	
 Cheng,	
 A.C.	
 Huang,	
 B.	
 Schmerl,	
 P.	
 Steenkiste,	
 Rainbow:	
 Architecture-­‐	
 Based	
 Self-­‐

AdaptaMon	
 with	
 Reusable	
 Infrastructure,	
 IEEE	
 Computer,	
 October	
 2004	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

•  J.	
 Kramer	
 and	
 J.	
 Magee,	
 Self-­‐adaptaMon:	
 an	
 architecture	
 challenge,	
 Future	
 of	
 SoBware	
 Engineering,	
 FOSE	

2007	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

•  D.	
 Weyns,	
 S.	
 Malek,	
 J.	
 Andersson,	
 	
 FORMS:	
 Formal	
 reference	
 model	
 for	
 self-­‐adaptaMon,	
 ACM	
 TransacMons	

on	
 Autonomous	
 and	
 AdapMve	
 Systems,	
 TAAS	
 7(1),	
 2012	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

•  D.	
 Weyns,	
 R.	
 Haesevoets,	
 A.	
 Helleboogh,	
 T.	
 Holvoet,	
 W.	
 Joosen,	
 The	
 MACODO	
 Middleware	
 for	
 Context-­‐

Driven	
 Dynamic	
 Agent	
 OrganzaMons,	
 ACM	
 TransacMon	
 on	
 Autonomous	
 and	
 AdapMve	
 Systems,	
 5(1),	
 2010.	

•  D.	
 Weyns,	
 U.	
 IBikhar,	
 D.	
 Gil	
 de	
 la	
 Iglesia,	
 and	
 T.	
 Ahmad,	
 A	
 Survey	
 on	
 Formal	
 Methods	
 in	
 Self-­‐AdapMve	

Systems,	
 FiBh	
 InternaMonal	
 C*	
 Conference	
 on	
 Computer	
 Science	
 and	
 SoBware	
 Engineering	
 2012	

•  J.	
 Zhang	
 and	
 B.	
 Cheng,	
 Model-­‐based	
 development	
 of	
 dynamically	
 adapMve	
 soBware,	
 InternaMonal	

Conference	
 on	
 SoBware	
 Engineering,	
 ICSE	
 2006	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

•  I.	
 Epifani,	
 C.	
 Ghezzi,	
 R.	
 Mirandola,	
 and	
 G.	
 Tamburrelli.	
 2009.	
 Model	
 evoluMon	
 by	
 run-­‐Mme	
 parameter	

adaptaMon,	
 InternaMonal	
 Conference	
 on	
 SoBware	
 Engineering,	
 ICSE	
 2009	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

•  R.	
 Calinescu,	
 L.	
 Grunske,	
 M.	
 Kwiatkowska,	
 R.	
 Mirandola,	
 and	
 G.	
 Tamburrelli.	
 Dynamic	
 QoS	
 Management	

and	
 OpMmizaMon	
 in	
 Service-­‐Based	
 Systems,	
 IEEE	
 TransacMons	
 on	
 SoBware	
 Engineering,	
 TSE	
 2011	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

•  C.	
 Ghezzi,	
 L.S.	
 Pinto,	
 P.	
 SpoleMni,	
 G.	
 Tamburrelli:	
 Managing	
 non-­‐funcMonal	
 uncertainty	
 via	
 model-­‐driven	

adapMvity,	
 InternaMonal	
 Conference	
 on	
 SoBware	
 Engineering,	
 ICSE	
 2013	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

•  h8p://homepage.lnu.se/staff/daweaa/AcMvFORMS.htm	
 (available	
 from	
 October	
 15,	
 2013)	

