Assurances for Self-Adaptive Systems

SERENE Autumn School
October 2, 2013 Kiev

Danny Weyns, Linnaeus University Sweden
danny.weyns@Inu.se
http://homepage.lnu.se/staff/daweaa/index.htm

Your tutor this afternoon

Sweden
Finland
Norway
United Denmark R\ SN
Kingdem Belarus
Ireland Poland /.
~~Germany | YL
AR s (@l Ukraine I
{5 Austrial ~—48 o ‘
Bay ofy France £ 35 "2 ~Romania’”. tet':f“
Biscay <! 1 .r
o R o dian L
- Spain D :
: Greece Turkey
Portugal
MMeaditarramanns S ‘Q\I;iﬁ

Linnaeus University Vaxjo campus — Sweden
Research team focusing on software architecture and self-adaptive systems

Motivation

Engineering contemporary software systems is
complex due to uncertainties at design time

Changing availability of resources
Faults that are difficult to predict

Changing or new user goals

How to engineer such systems and guarantee
system goals regarding of the uncertainties?

Promise of self-adaptive systems*

Self-adaptive systems are able to adjust their behavior in
response to their perception of the environment and the
system itself

to become more resilient, dependable, robust, energy-
efficient [...]

B. Cheng et al., Software Engineering for Self-Adaptive Systems: A Research Roadmap, Lecture Notes in
Computer Science, vol. 5525, 2009

Promise of formal approaches for
self-adaptive systems™

Formal methods offer a means to
provide evidence that the system requirements are
satisfied during operation

regarding the uncertainty of changes that may affect the
system, its environment or its goals

>l<Software Engineering for Self-Adaptive Systems: Assurances
www.dagstuhl.de/de/programm/kalender/semhp/?semnr=13511

Goals of this tutorial

Understand the notion of self-adaptation

Get familiar with references approaches for
architecture-based self-adaptation

Get familiar with state of the art in formal
methods for self-adaptive systems

Understand the challenges in formal methods
at runtime for self-adaptive systems

Overview

Architecture-based self-adaptation vs. control-
based self-adaptation

Reference approaches for architecture-based
self-adaptation

Formal methods for self-adaptive systems
Active formal methods for self-adaptation
Wrap up

Self-adaptation

Architecture-based self-adaptation

Control-based self-adaptation

disturbance input

Managing system

| adapt

monitor

Managed system

I 1 effect

Environment

control ﬂ
reference

input » Controller -~ Target system

| 4

42

Transducer

output

Basic model control-based self-
adaptation

reference input

control input

>

Controller

disturbance input

|

—

AN

Target system

measured output

%

transduced output

Discrete time dynamic system

x(k+1) = f(x(k),u(k),dx(k))
x: state; u: input; dx: state disturbances

y(k) = g(x(k),u(k),dy(k))

y: output; u: input; dy: output disturbances

Transducer

Control-based
self-adaptation

Approximate
System Model
Performance Resource
Error Correction Allocation
Performance v \ \ Actual
Set Point Actuator Software |Performance
g »
Caniiialtsy (Resource Allocator) System >
Measured Sensor
Performance

Classic controllers
(Abdelzaher et al. 2003)

Enclosure Server
budget

Nested and layered architectures
(Zhu et al, 2006; Kusic et al. 2009)

Distributed System
(m tasks, n processors)

1
Ut\llzanon M

Controlled | 1 (K)
Variables
u, (k)

B, Riins Rm.lx.\ Model Monnor o @
E : : —{ Predictive @
Qnro y Rate @ ®
Modu\alor RM

\}’1 (k) — Feedback Loop
ICOnttl'0| . Precedence Constraints
npu ° @ Subtask

N, (K)

MIMO systems
(Dio et al., 2002, Lu et al. 2005)

ri(k)
|) \ v
U (K+1
C, o(k+1) C, C,
k T,

rx(K) T, " 61 Too
T,,® oT, e o ©
Tsi0@ Txo ol T4® T,
P, P, P, P, P,

Decentralized control
(X. Wang et al., 2007; R. Wang et al 2012)

AR,

ro Cib * ra —V re *‘
Target Input Output 1-Cta-Cib
H1\|—> Controller System
4
Actual
Learning
Block

Controlling software vs. resources
(Filieri et al. 2011; Maggio et al. 2012)

1r4

10

Basic model architecture-based

monitor

self-adaptation

Self-adaptive software system

Managing system

monitor ﬂ adapt
A4

Managed system
Controllable software

monitor | 1 effect

Environment

Non-controllable software,
hardware, network, physical context

11

Overview

Reference approaches for architecture-based
self-adaptation

Formal methods for self-adaptive systems
Active formal methods for self-adaptation

Wrap up

Reference approaches for
architecture-based self-adaptation

1999: Oreizy et al.

2003: MAPE-K IBM

2004: Rainbow

2007: 3-layer reference model
2012: FORMS

Reference approaches for self-adaptation
Oreizy et al. 1999

Plan changes

* Adaptation management / \

. sl dae aptation Evaluate and
- Llfe CyCIe Of SEIf‘ Ddglscyript;ion% %ﬁgna?;etment obgja?\r/];[t(i)(:ns
adaptation \ /
- SyStem monItOFS and Enact changes and

collect observations

adapts itself / }

* Evolution management

Evolution
management

Architectural

Implementation
model P

— Change of application

I;I
L fm®
software \ aintain /

consistency

— Maintain consistency and system egtty

P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici, D. Rosenblum, and A.
Wolf, An Architecture-Based Approach to Self-Adaptive Software, IEEE Intelligent Systems, May/June 1999

Reference approaches for self-adaptation
IBM MAPE-K 2003

* Autonomic manager
— Reference model
— Four key functions
+ knowledge

* Four types of self-
adaptations

— Self-configuration

— Self-optimization é Managed elementé
— Self-healing

— Self-protection

Autonomic manager

Kephart and Chess, The vision of autonomic Computing, IEEE Computer, January 2003

Reference approaches for self-adaptation
Rainbow 2004

Architecture layer

e Framework realizes

MAPE control loop Std?gt i E g
e Uses architecture model D & !E Y &8

of system and context e peres
. Checks constraints e AL

| Effectors System API Resource

e Adapts running system if B Hhesiien 1 W

violation is detected T

D. Garlan, S-W. Cheng, A.C. Huang, B. Schmerl, P. Steenkiste, Rainbow: Architecture- Based Self-
Adaptation with Reusable Infrastructure, IEEE Computer, October 2004

Reference approaches for self-adaptation
3-Layer reference model 2007

Reference model based on Gat’s
3-layer robotics model

Component control realizes
application functions

Change management handles
adaptations of component layer
based on set of plans

Goal management produces
change management plans
when needed (e.g., to deal with
new conditions or goals)

Goal
Management | G’ | | G” |
* Changle Plans
' v
Plan Request
I(\:ngi:gi:ment P J P2
9 * Change Actions
|
|
Status *
Component

Control

EE=TY

Kramer and Magee, Self-adaptation: an architecture challenge, Future of Software Engineering,

FOSE 2007

Reference approaches for self-adaptation
FORMS 2012

 FOrmal Reference Model for Self-adaptation

* Integrates different perspectives on self-
adaptation
— Reflection perspective
— MAPE-K perspective
— Distribution perspective

D. Weyns, S. Malek, J. Andersson, FORMS: Formal reference model for self-adaptation, ACM Transactions
on Autonomous and Adaptive Systems, TAAS 7(1), 2012

FORMS: Running Example
Traffic jam monitoring

N S S 3

% Camera 2z Car Viewing Range

D. Weyns, R. Haesevoets, A. Helleboogh, T. Holvoet, W. Joosen, The MACODO Middleware for Context-Driven
Dynamic Agent Organzations, ACM Transaction on Autonomous and Adaptive Systems, 5(1):3.1-3.29, 2010.

19

Running Example: traffic jam monitoring

org1 org24
Local Camera Local Camera Local Camera Local Camera
System(System? System3 Systerd
.. 1.
KEY g Node % Qrganization —— Network

20

Running Example: traffic jam monitoring

Local Camera System
orgl) org24 ’,*' = . i .
; Local Traffic Monitoring Self-Healing Subsystem
Local Camera Local Camera Local Camera Local Camera : System
i System1 System2 System3 Systermd |
L Dependency Repair
'I ' ' ' ‘\‘ ' Agent Model Strategy
Q Node Qrganization —\\ Network O N . . I
\ rganization NN L[
' i ~) O, Query/ Oy Quer
| Middleware I/ Update o/ Y
Y Services Monitor
\
\\ /D
] o O A ¢) .
\ Organization : Self-Healing Manager
\ Middleware —O O 1+—
\\\ Repair /[\ »
% ,/l\, Perceive/ ‘ Ping/Echo
‘\\ i Send/Receive ,i
\
\
T I
% Communication and Host
‘\\ E Infrastructure Services
\‘ {7}
\\
Y Distributed Communication & Host Infrastructure
‘\
AY
Node
KEY

I:l Component
—(O Provided interface)— Required interface

<4— Delegates

21

FORMS Reflection Perspective

reasons about

1.7 and acts upon > 1.*
Computation Model
P ——— - -
1.%)
Representation I |
triggers > Reflection Domain
] 0.1 Model Model
1 monitors and — —
Base-Level Reflective adapts > 1.7 1. :
Computation | 4 4 |Computation[~= - Subsystem | !
IR I i i
|
perceives and : ! . : :
effects v : S I Reflective | | '
: perceives v Subsystem :
|
| * 1
Attribute |------ : S | Base-Level | ___ j . e !
1.* O Subsystem
0..1 1 4 = KEY
Environment ar
: FORMS Element
1. * 9 <is situated in L - -<3Self-Adaptive <>J - Generalization
Process |------ ! System

Association

--=-=<> Containment

L

FORMS Reflection Perspective

Self-adaptive system

reasons about

Attribute

Process

1.7 and acts upon > 1.*
Computation Model
P ——— - -
1.%)
Representation I I
triggers > Reflection Domain
] 0.1 Model Model
1 monitors and — —
Base-Level Reflective adapts > 1.7 1. :
Computation | 4 4[Computation[= - Subsystem i !
T a T = | I
. 1. * 51-- : !
perceives and i ! . : :
effects v | . (S I Reflective | i [
: perceives v Subsystem I
|
| 1“t | 1
....... ! Base-Level I
1 el I —— - T < e ‘
1.* O Subsystem <
0.1 1 4 % KEY
Environment :
: FORMS Element
0 1 < is situated in L+ -<ySelf-Adaptive - Generalization
_____ 1 .-
B System Association

---=<> Containment

FORMS Reflection Perspective

Self-adaptive system

Local Traffic Monitoring Self-Healing Subsystem
System
Dependency Repair
Agent Model Strategy
A\ Organization [L
Middleware (\[)/ S;ljgé &r/ Query
Services Monitor

OOt
Organization Self-Healing Manager
Middleware O 4—)—

Repair A\
/J\ Perceive/ Ping/Echo
i. Send/Receive

; !

! 1

Communication and Host
(j Infrastructure Services

|-

Distributed Communication & Host Infrastructure

Q Node Component
KEY

—(O Provided interface)— Required interface ~<€—— Delegates

24

FORMS Reflection Perspective

reasons about

1.7 and acts upon > 1.*
Computation Model
P ——— - -
1.%)
Representation I |
triggers > Reflection Domain
] 0.1 Model Model
1 monitors and — —
Base-Level Reflective adapts > 1.7 1. :
Computation | 4 4 |Computation[~= - Subsystem | !
IR I i i
|
perceives and : ! . : :
effects v : S I Reflective | | '
: perceives v Subsystem :
' |
* I
Attribute |------ , S S ~| Base-Level | __ j . e !
1.* 0 Subsystem
0.1 1 4 = KEY
Environment |— ar
: FORMS Element
1.* 9 <is situated in L - -<3Self-Adaptive <>J - Generalization
Process f--=---- : System

Association

--=-=<> Containment

FORMS Reflection Perspective

Local Camera System

Local Traffic Monitoring Self-Healing Subsystem
System
Dependency Repair
Agent Model Strategy
Organization P] L
")\ Middleware \\[)/ L?,Lil(ilr}t/é O Query
Services Monitor
—O<—E —O—{——|
Organization ' Self-Healing Manager
Middleware O Or—1e—
Repair J\
/J\ Perceive/ ©\ ' Ping/Echo
orgl org23 -

Local Camera
Systemn(

Local Camera

System?2

Local Camera
Systern3

i‘ Send/Receive
LTJ
L

'
I

/L\ Communication and Host
Local Camera i Infrastructure Services

Systermd 0

Distributed Communication & Host Infrastructure

KEY Q Node

QOrganization

Q Node Component
KEY

— Network —O Provided interface)— Required interface <€—— Delegates

26

FORMS Reflection Perspective

Base-Level Subsystem

1.

*

reasons about
and acts upon >

Computation Model
g x 77T] A
T Representation |
triaaers > ‘ Reflection Domain

o 0..1 Model Model
| | ! monitors and o7 T
Base-Level | Reflective adapts > 1.0 1. !
Computation | 4 4|Computation 7| Subsystem ! :
R |4 s | 11 ' '
] : e e
perceives and ! : I Reflective | I
| |
effacts v i perceives v Rttt Sl < Subsystem > :
1
I I
Attribute |------ , S ISR | 4 Base-level | _ | _____ N TGV !

1. & |1 Subsystem i f
_ 0..1 | 1 * | KEY
Environment SRLEL |
: i FORMS Element

1 Q 1 < is situated in L 4 -<1Self-Adaptive —fp Generalization
Process f------ : m System Association
---- Containment

27

FORMS Reflection Perspective

Base-Level Subsystem

Local Camera System

Local Traffic Monitoring Self-Healing Subsystem
System
Dependency Repair
Al Model Strategy
Organization i I
Kﬁg Middleware O L(j)uery / O Query
. _ Ipdate
Services Monitor I

o OO
Organization Self-Healing Manager
Middleware O < O 4—)—

Repair /]\
/J‘\ Perceive/ f Ping/Echo

¢ Send/Receive i\

T |

Communication and Host
(j Infrastructure Services

|-

Distributed Communication & Host Infrastructure

Q Node Component
KEY

—(O Provided interface)— Required interface ~<€—— Delegates

28

FORMS Reflection Perspective

Reflective Subsystem

reasons about

1. and acts upon > 1.*
Computation Model
g x - TTTTTTTTO > 4
T Representation
. | ; -
triggers=> Reflection Domain
I | 0.1 I Model Model
' . monitors and — —
Base-Level Reflective adapts > 1.5 1.5
Computation | | 5 4 |Computation|= Subsystem | i
I T * I
* : 1 “i * : 1 .. : :
. 1 | I | |
perceives and ! | Reflective I I
| |
eftects v i perceivesv| ~TTTTTTTTTTTTTLTTTTT o Subsystem = !
|
| 1.* | |
Attribute |------ , R | Base-level |} _______ [I !
1." & |1 Subsystem <~ |
: 0..1 | 1 | KEY
Environment e |
: i FORMS Element
q Q|1 <is situated in L 1 -<3Self-Adaptive <>J -—pp Generalization
Process [==---- | System Association

----= Containment

29

FORMS Reflection Perspective

Reflective Subsystem

Local Camera System

Local Traffic Monitoring Self-Healing Subsystem

System
Dependency Repair
Agent Model Strategy
J\ Organization l / [
: Middleware \?/ 8:5;{9 \CI// Query
Services Monitdr
—Foe—u—otae
Organization Self-Healing Manager
Middleware O OH—11e— —
Repail
/l ~ Perceive/)\ Ping/Echo

i‘ Send/Receive
Lrl
T |
Communication and Host
(j Infrastructure Services

|-

Distributed Communication & Host Infrastructure

Q Node Component
KEY

—(O Provided interface)— Required interface ~<€—— Delegates

FORMS Distributed Coordination Perspective

reasons about and acts upon
Reflective > 1.* | Reflection Self-Adaptive
Computation Model System
Coordination| |Coordination E .
Protocol Model 1
T T | 1
11 ' | Distributed
) O ! Self-Adaptive
Coordinati 1.+ Local 1 * ! System
I\::ghg]r:s?nn ----< Reflective | __________ Co Q
5 Computation o |
| I
* - 1 __'
L 0 ¢ :
' Reflective Self-Adaptive Lo
Cogr:dlnatllon _ Subsystem < Unit - ? Self-Adaptive
i monitors and ! System
adipts 4)
Subsystem (< :
|
perceives v !
Local 1.*
Base-Level G— Managed | -------]
Subsystem Managed
System
KEY Y4 AW
1 - - - S ~
FORMS Elements . . L7 Ssel .
’ perceives and effects P >
[] this perspective Environment = Local Domain
Base-Level Model
otherperspective(| | T Jbe-—__ i
|:| it Coordination | ~>| Computation
=f> Generalization Mechanism $ reasons about 1.+
o and acts upon
Association Base-Level >
Computation
—-——> Containment P 1.*

FORMS Distributed Coordination Perspective
Local Self-Adaptive System

Local Camera

Local Camera

Local Camera

Systemn
LocalTraffic Self-
Monitoring Healing
System Subsystem
—

Host Infrastructure

Systemn?
LocalTraffic Self-
Monitoring Healing
System Subsystem

Host Infrastructure

System?
LocalTraffic Self-
Monitoring Healing
System Subsystem

Host Infrastructure

KEY

g Node

Component

N ebwork

32

FORMS Distributed Coordination Perspective
Local Managed System — Self-Adaptive Unit

reasons about and acts upon

Reflective ‘ > 1.* | Reflection Self-Adaptive
Computation Model System
Coordination| |Coordination E .
Protocol Model 1
T T 1 $
11 ' : Distributed
0O O ! Self-Adaptive
_ 1.+ Local 1.+ I System
%’:;gg‘;g;" L-2-< Reflective | : 0
5 Computation M !
| ol
» 0 ¢ "
' Reflective Self-Adaptive Local
Coordination Sierer T OnaP Ve L - <l seif-Adaptive
Channel monitors and Uss~ System
adapts
ot 9
Subsystem | < |
|
perceives v !
Local 1.F
Base-Level e]
Subsystem S
System
KEY 7 ARy
1 -7 SN
FORMS Elements . . Lo el W
s perceives and effects i S
I:I this perspective Environment - gy Domain
Base-Level Model
other perspective| | | T Fe—e—-_ i
|:| persp Coordination | - > Computation
=f> Generalization Mechanism $ reasons about 1.+
and acts upon
Association Base-Level >
utati
—-——> Containment SOy 1.%

FORMS Distributed Coordination Perspective
Local Managed System — Self-Adaptive Unit

Local Camera

Local Camera Local Camera

Systemn] Systern? System?
LocalTraffic Self- LocalTraffic Self- LocalTraffic Self-
Monitoring Healing Monitoring Healing Monitoring Healing
System Subsystem System Subsystem System Subsystem

e e
Hog Infrastructure

Host Infrastructure |

Host Infrastructure

KEY

g Node

Component

N etwiork

34

FORMS Distributed Coordination Perspective

Coordination Mechanism

reasons about and acts upon
Reflective > 1}* | Reflection Self-Adaptive
Computation Model System
Coordination| |Coordination A o
Protocol Model I
T T 1 |
11 ' 9 \ Distributed
O O ! Self-Adaptive
Coordinati 1.+ Local 1.1 I System
bjl)géhg‘rzsomn ----<M Reflectve | '} . \ Q
Computation L |
| !
(? * . 0 6 1. :
|
N Reflective Self-Adaptive ot
Coordination Subsystem <= Unitp - - £ Self-Adaptive
adapts Q
>
Subsystem (<= :
|
perceives v !
Local 1.*
Base-Level !
Subsystem 3 Managed =------ ’
System
KEY 7 ARy
1 . ’ - -~ -~ -
FORMS Elements) . L7 Ssal .
4 perceives and effects i ~.
[] this perspective Environment = -ocal Domain
Base-Level Model
other perspective| | | [T ble--- - i
|: persp Coordination [- ~>| Computation
=f> Generalization Mechanism $ reasons about 1.*
and acts upon
Association Base-Level >
Computatio
—-——> Containment Myl 1.*

FORMS Distributed Coordination Perspective

Coordination Mechanism

Local Camera

Systemn
LocalTraffic Self-
Monitoring Healing
Sydem Subsystem

Host Infrastnfure

Local Camera

Systemn?
LocalTraffic Self-
Monitoring Healing
Sydem Subsystem

Local Camera
System?

Host Infrastrucfe |

LocalTraffic
Monitoring
System

Self-
Healing
Subsystem

Host Infras’truAure

_

KEY

g Node

ping/echo msgs
N etwork

Component

36

FORMS MAPE Perspective

reasons about and
KEY acts upon > 1..* | Reflection |1..*
Model [~~~ "~~"777°7°
FORMS Elements 1} {
. . Coordination | |Coordination| |Coordination :
I:I this perspective Channel Protocol Model |
[] other perspective o 1, 1,7 . |
~ ’ v v |
> Generalization 1+) 6 ’ Subsystem | | Concern | |Environment MAPE :
B Coordination Model Model Model Working Model | |
Association Local > - — 17| Mechanism |
. Reflective | Distributed
-~ —= Containment Computation |-~~~ """ ----- - oo oo oo oo o oo oo oSS m s s s s s H : Self-Adaptive
? | ! System
" I
P . b b I
) triggers — & triggers triggers 1 :
Update Monitor . > - Analyze — > —| Plan — 2 —|Execute Self-/l-\J:iatptive -—<> Self-k‘:ic:;lative
. . » System
adapts v
e v
monitors > 1.2 !
Subsystem !
. Local 1.* I
1 | vperceives . b Managed f[------- I
: < perceives and effects System
Environment -
1

37

FORMS MAPE Perspective

Local Reflective Computations

reasons about and
KEY acts upon > 1..* | Reflection |1..*
Model [~~~ "~~~""777°7°
FORMS Elements ? |
- . Coordination| |Coordination| |Coordination :
:1 this perspective Channel Protocol Model :
[] other perspective ~ 1, 1,7 . |
~ ’ v - v |
«f> Generalization 1.+) (|) ’ Subsystem | | Concern | |Environment MAPE :
- e Model Model Model Working Model | |
Association Local > - — 1-"] Mechanism E
) Reﬂech\(e I Distributed
- -~ Containment Computation [~~~ -~ "~ "- """ "o o oo oo s m oo oo oS s s s ss s s s H ! Self-Adaptive
? | ! System
1 |
3 u] O 1"t
! triggers — I triggers triggers O 0 . :
Update Monitor > Analyze 2 Plan 2__{Execute Self-Adaptive - T
. * * * * > Unit --<> Self-Adapfive
n System
adapts v

e v

monitors > 1.7 !

Subsystem !

) Local 1.7 I

1 | vperceives bt Managed |------- I
: < perceives and effects System

Environment
1

38

FORMS MAPE Perspective

Local Reflective Computations

reasons about and
KEY acts upon > 1..* | Reflection |1..*
Model [~~~ "~~~""777°7°
FORMS Elements ? |
- . Coordination| |Coordination| |Coordination :
:] this perspective Channel Protocol Model |
[] other perspective ~ 1, 1,7 . |
~ ’ v - 4 |
P> Generalization 1.+) 6 ’ Subsystem | | Concern | |Environment MAPE :
- e Model Model Model Working Model | |
Association Local > - — 1.”] Mechanism E
) Reflective I Distributed
- -~ Containment Computation [~~~ "=~ """ -- oo oo oo os oo s s oo s o oo oss oo oo H ! Self-Adaptive
? ! ! System
1 |
) u | O 1__'
I triggers | triggers triggers 6 Q . .
_ > > > | 1. Local
Update Monitor - " Analyze — — Plan — —|Execute Self-Adaptive | _ < Self-Adaptive
e System
adapts v ¢

= <.>

) monitors > 1. !

Subsystem !

- Local 1.7 I

1 | Vv perceives bt Managed |------- I
: < perceives and effects System

Environment pe
1

39

FORMS MAPE Perspective

Local Reflective Computations

Local Camera System

Local Traffic Monitoring

Self-Healing Subsystem

System
Dependency Repair
Al Model Strategy
(n)/;%z;’ez‘;‘g;)en \(Hl Ouefy/ \H}l Niory
Update
? Services Monitor T . T
—Oe—— “— —
Organization Self-Healing Manager
Middleware) < «—)—
Repair J\
(l\ Perceive/ T PIg/ECNo
.i. Send/Receive %
Communication and Host
Q Infrastructure Services
perceive _

€— sense

Distributed Communication & Host Infrastructure

<€— adapt
KEY I;II

Node

|:| Component

—(O Provided interface)— Required interface <€—— Delegates

40

FORMS MAPE Perspective

Reflection Models

reasons about and
KEY acts upon > 1.*| Reflecton |1.*
Model

FORMS Elements ? |
- . Coordination| |Coordination| |Coordination :
:, this perspective Channel Protocol Model I I I I |
[] other perspective ‘\\] 1 E 1, - i i T | 1 i
«f> Generalization 1.+) 4 ’ Subsystem | | Concern | |Environment MAPE :
B e Model Model Model Working Model !
Association Local [~ __ 17| Mechanism |

) Reﬂech\(e I Distributed

- -~ Containment Computation [~~~ "=~ """ -- oo oo oo os oo s s oo s o oo oss oo oo H ! Self-Adaptive

? ! ! System

1 |

T . b b 71

! triggers ' triggers triggers 1 :
Update Monitor - > - Analyze — 2 — Plan — 2 —|Execute Self-Adaptive -—<> Se"-l;\c;ciﬁve
- " " e System
adapts v
1.* Y

. |
monitors > 1. :
Subsystem I

Local 1.7 |

bt Managed [------- !
; < perceives and effects System
Environment .

1 | v perceives

41

FORMS MAPE Perspective

Reflection Models

Local Camera System

Local Traffic Monitoring
System

Agent

{I\ Organization
ﬁ) Middleware

Services

Monitor

O —Op-
Organization Self-Healing Manager
Middleware O 4—)—

Self-Healing Subsystem

Dependency Repair
Model Strategy

O, Query/

\ O Que
\[/ Update j/ v

Repair A\
/J\ Perceive/ Ping/Echo
i. Send/Receive %
Communication and Host
9 Infrastructure Services
[

Distributed Communication & Host Infrastructure

KEY Q Node

—(O Provided interface)— Required interface <€—— Delegates

|:| Component

42

(A glimpse of) FORMS in action

C1 Cc2 C3
agent1 agent2 agent3
wooorgl o v org2 i M _org3 Local Camera System

Local Traffic Monitoring Self-Healing Subsystem

R . X System

; . Dependency Repair
T1-2 4 ,': 4 ? s ! Agent Model Strategy
. A Orged s a7 Organization
: z v
Midcileware \]J 8:5;6 \f Query

N__orgl . PSS
e e e =l
~

HO— —
Organization Self-Healing Manager
Middleware O 4—)—

T3 %r 1 _/ a2 -
/RTINS I e - A Percsives O\ Ping/Echo
"B A- T G T T G G A- i Send/Recsive "&l'"
R ™, \»\ /// N >, Communication and Host

T3 | ? 5 %K/ H F \ E Infrastructure Services
L N/ / / ‘\;\, (O ./ s

/ N Nooorg3 L -
it~ Distributed Communication & Host Infrastructure

Keel orgl y
A _=Im_ BN ﬁﬁﬁ&-.’.’ﬁv

Viewin
? Camera (X Car Ran 2
9 KEY Q Node |:| Component
T % Organization
4 9 b Master Role —O Provided interface)— Required interface <€—— Delegates

?/ Failure —
(a) Scenario with a failing camera (b) Deployment view of one camera

~

FORMS in action gt

~~~~~~~

__ Environment |
attributes : P Attribute
processes : P Process

attributes # &

_ TrafficEnvironmentpg |
TrafficEnvironment

attributes = { cameray , cameras , cameras , freeflow_zoney |
freeflow_zoney , congested_zones }

processes = traffic_domain_processes |
communication_infrastructure_processes

traffic_domain_processes ==
{monitor_cameray , monitor_cameras , monitor_cameras }

communication_infrastructure_processes == {transmit } 44



FORMS In action

_ LocalCameraSystem

selfHealingSubsystem : SelfHealingSubsystem
myName : Name

localTrafficMonitoringSystem : Local TrafficMonitoringSystem

Local Camera System

Local Traffic Monitoring
System

Situated LocalCameraSystem

Agent

TrafficEnvironment
LocalCameraSystem
context : Context

context C attributes N

/l\ Organization
(P Middleware

Services

HO— —
QOrganization Self-Healing Manager
Middleware O 4—)—

I

N Perceive/
'L Send/Recsive

Self-Healing Subsystem

Dependency Repair
Model Strategy
Query/ Query
\l’) Update \‘l'/
AMonitor

N\ Ping/Echo

)

-

:

Communication and Host
9 Infrastructure Services

__TrafficJamMonitoringSystem

Distributed

J

Communication & Host Infrastructure

localCamaraSystems : P SituatedLocal CameraSystem




FORMS in action

— TrafficEnvironmentps
A TrafficEnvironmentps
e? : events
5?7t shutdowns

e? = {cameray} — {}
$?7 = monitor_cameray
attributes’ = attributes \ first(e?) U second(e?)

processes’ = processes \ {s7?} |

_ Clock

time : Time |

_ Tick
A Clock |

I Ll __ / - .
- oS ﬁﬁﬁt‘nﬁﬁﬂa

time' = time + 1

__Timeout
=SelfHealingManager |
Tick

' Name

In!: Name; t: Time o
(nl t) € (()ol(hnafzon Mechanism.ping_time N
t + coordinationMechanism.wait_time > time'

46



__TrafficEnvironmentps
A TrafficEnvironmentpg
s events

e?
? . shutdowns

e? =

§? =

{camerag} — {}
monitor_cameras

FORMS In action

attributes’ = attributes \ first(e?) U second(e?)

Local Camera System

processes’ = processes \ {s7}

Local Traffic Monitoring

System
_ Timeouty
) Agent
Timeout
—_ . Organization
=SelfHealingManagerOners Q Midcieware
Services
time = 4470
| Organization
nl=2 Middleware
|

N Perceive/
i‘ Send/Receive

__ ClameraOneRecoversFromFailure CameraTwo

o]

Self-Healing Subsystem

Dependency
Model

Repair

Strategy
Query/

Que!
\‘I'/Updare kl'/ ety

Self-Healing Manager

Monitor

N Ping/Echo
4

0

:

A TrafficJamMonitoringSystems
TrafficEnvironmentrs

Communication and Host
Infrastructure Services

g

Timeout;
les17?, les1! : SituatedLocal CameraSystem

L.

Distributed Communication & Host Infrastructure

Attribute

camera .
cam : EnvironmentRepresentation

n : Name

{camera} = first(e?) A

traffic_communication_channel = traffic_.communication_channel \ {n — cam} A

les1?.myName = 1 A
les1l.context = les1?.context \ {camera} N
les1!.selfHealingSubsystem = updateSelfHealingSubsystem (lcs1?, camera, cam, n) A

y s

les1).local TrafficMonitoringSystem =
adaptLocal TrafficMonitoringSystem(lcs1?, camera, cam,n) A
localCamaraSystems’ = localCamaraSystems \ {lcs1?} U {lcs1!}




Reference approaches for self-adaptation
FORMS 2012

Integrated, extensible model
Formal underpinning

Focus on modeling and reasoning about structural
aspects of self-adaptive systems

Reference model can be mapped to different
architectures

Vocabulary for domain of self-adaptive systems



Overview

* Formal methods for self-adaptive systems
* Active formal methods for self-adaptation
* Wrap up



Formal methods for self-adaptation
A selection

e 2006: Zhang & Cheng (design time verification
and model transformation)

e 2009: Epifani et al. (K models at runtime)

e 2011: Calinescu et al. (MAPE functions at
runtime)

e 2013: Ghezzy et al. (model interpretation)

D. Weyns, U. Iftikhar, D. Gil de la Iglesia, and T. Ahmad, A Survey on Formal Methods in Self-Adaptive
Systems, Fifth International C* Conference on Computer Science and Software Engineering 2012



Formal methods for self-adaptive systems
Zhang and Cheng 2006

eeeeeeeeeeeeeeee

* Different classes of
adaptations
— one-point, guided

adaptation, overlap
adaptation
* Processtocreateand | e me= = ¢ | L g aaaaaaaa
verify formal models / 2w
(Pet ri nets and LT L) <> j -----
' WD 0
* Automatically generate e 2

dataX shiftX dataY shifty ~ dataZ

programs from them

J. Zhang and B. Cheng, Model-based development of dynamically adaptive software, International
Conference on Software Engineering, ICSE 2006



Formal methods for self-adaptive systems
Epifani et al. 2006

v

WJL Bgﬁges:ian i Runtime
Data

Estimation

* Probabilistic model 4%

represents reliability of
execution flows of system

 Probabilities are
dynamically updated
based on observations

* Formal model of system
behavior at runtime: focus
on K of MAPE-K

l. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli. 2009. Model evolution by run-time parameter
adaptation, International Conference on Software Engineering, ICSE 2009



Formal methods for self-adaptive systems
Calinescu et al. 2011

Admin

X

* Probabilistic model of reliability /).
and performance properties of
service-based system

* Requirements specified in
probabilistic computation tree
logic

* Online verification of properties ©
using Prism A

* Adaptation of workflow engine
(service selection + resources)

Adaptation logic consists of set of
tools that are glued together

,[operational|

model |
&~

y
Qc
¢ qllll ement

S

@resource

¥ ’ allocation
abstract | [@concrete
W( Il\[l W] | Wi 11\11 W

§:>~é:£>~<:;>~§:>—?,

| workflow

Workflow engine

Monitor Analyse Plan Execute i 3
T Autonomic manager [— Y L, —_
\ N
\_‘i Internet )
9 i "R A
v 4o v N e
o) 8- o - - B - i

QoS requirements |

ate
rdel
ior-knowledge _
nal model ~ {
KAMI PRISM GPAC

R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tamburrelli.

Dynamic QoS Management and Optimization in Service-Based System:s,

IEEE Transactions on Software Engineering, TSE 2011

»

Service-based system

*?7

~\nt onomic manager

abstract _
ow™
o GPAC manageability adaptor

S

ensors I
1




Formal methods for self-adaptive systems
Ghezzy et al. 2013

Annotated UML diagram models - :§3 . \
response time, energy consumption :g—@ﬁ' ~rvokes
and usability of different execution L Aoty Diagrams . implementations
paths of the system \ 4 uses
Diagram is automatically translated 0@0 ~goneranes % T %
to Markov decision process using qg{;g%o ) Gonerator RIS %
P ri S m - executes

Embedded Model

Interpreter

Interpreter guides the execution of

the system using the model
Cumulative reward is used to select

path with highest utility """ UQ}—»
Adaptation logic is encoded in ad- .» ® (X g
o

<<Optional>> RT=<0.5; 1.1
----~— 8: WebSearch 9: Secondary [—»"" E=<4; 5>

Web Search U=<2; 3>

Activity

E=<2; 3>

MDP

hOC interpreter RT=<0.6; 1.2

E=<4; 5>
U=<2; 3>

C. Ghezzi, L.S. Pinto, P. Spoletini, G. Tamburrelli: Managing non-functional uncertainty via model-driven
adaptivity, International Conference on Software Engineering, ICSE 2013



Summary SOTA

Increasing attention for formal models at
runtime to provide guarantees of adaptation

Probabilistic approaches dominate

Focus on formal models of system,
environment and goals (K of MAPE-K)

No systematic formalization and verification of
of adaptation functions (MAPE of MAPE-K)

Limited support for unpredicted changes



Overview

e Active formal methods for self-adaptation
* Wrap up



Starting points

* Formalize adaptation functions to provide
guarantees about adaptation capabilities
— E.g., does analysis detect errors correctly?
— Are adaptations performed in order of selected
plan?
e Support unanticipated changes

— Requires support for adaptations of adaptation
functions



ActivFORMS

Active formal models for self-adaptation

 Formal model of complete MAPE-K loop

* Model is directly executed to adapt the
managed system

 Model directly supports online verification of
goal satisfaction/violation

* Model can be adapted at runtime to support
unanticipated changes

http://homepage.lnu.se/staff/daweaa/ActivFORMS.htm (from October 15, 2013)




Goal
Management
Change Plans
4 |
' v
Plan Request
Manage [P ) [Pz
Management Chanae Act
4 |
Status v
Component
Control C1 Cc2

* 3 layered model of Kramer & Magee

— Component control (layer 1), change management (2),
goal management (3)

 Focuson layer 2 and 3

— Assumption: managed system is equipped with
required sensors and effectors

— Instrumentation of managed system is research
subject in its own right

* Case study: logistic multi-robot system



Case study

8 O 0 Robot System Manager
 Tasks 1 Map
= NS G [ e )
Pick |Drop |Status
A D Done
B D Done
C D R1
B D R2
A D Pending
C D Pending
A
— R2 @
D B
L




>

Engineer/
Admin

goal
adaptation

Approach

Goal
Manager

Adapt

Notify

72N

model
adaptation

@Dw%

Active Model

72N

system
adaptation

Analysis Planning

Monitoring

o=

typedef struct { ..

const ...

Execution

=2

bool fun ...

Enact /Update
Formal Model

Managed System

Probes

Tl

Virtual Machine

e
—>

Effectors



= —
r O a C ada pt t Goal model % dsystem M 4 Svst
i tati anage stem
Management oepaten Active Model e ’ g
Englneer/ \
| |

e Active model
— |s a formally verified model
— Realizes a MAPE-K loop
— To adapt the managed system

* Goal management
— Monitors the active model

— Can adapt the active model (e.g., to improve it or deal with
a particular adaptation problem)

* Engineer/Admin
— Can monitor goal satisfaction/violation

— Can change the active model, verify and deploy it, to
manage (new) goals using goal management



User

1

Realization

i <4+—P Tools

Admin/Engineer

]

Goal Manager

{ oo

MAPE-K Model

Active Model

Virtual Machine

l

Robot Manager

Probes

Effectors

'

Managed System (Robot)




Goal Management Interface

e 00 Active Models @ Runtime

| Connect | [(NewModel | | Add Goal |

™ Robot 1 - 192.168.0.10:80

addRequests() remRequests(} && lwaitRequired()
xecute[RiD]! execute[RiD]!
posUpdated() && lockPrevNode
. executelmmediately(} \.\ executeRemoval()
\
addRequests() lockNode® remRequests() && 'waitRequired() \ /
\ /
RID]! xecute[RID]! \ /
executeimmediately() executeRemoval()
— -

planning[RiD

planned()

doNothing(}

™ Robot 2 - 192.168.0.11:80

doNothing() addRequests(} remRequests(} && 'waitRequired()

execute[RiD]! xecute[RiD]!
executelmmediately() u\ /‘ xecuteRemoval(}
\ /
\ !
—_

e

planned()

planning[RiD]

planned()

doNothing()

Goal |Status

robotl != WAITING && robot2 != WAITING OK

| Update |




Virtual machine

Transforms a formal model (network of timed
automata) into a graph representation

Executes that model
Can adapt the current model at runtime
Can detect and notify goal violations



Levels of adaptation

* Level 1: active model adapts the managed
system

— Close temporally a lane in the warehouse for
maintenance

* Level 2: adapt the active model (adapt MAPE)

— Add a new drop location in the warehouse



Level 1 adaptations

Close temporally a lane in the warehouse for maintenance

- Adapt the robot to prevent it from
using a closed lane

R2 ®




Close temporally a lane in the warehouse for maintenance

Level 1 adaptations

enableLane() disableLane() && !waitRequired()
planEnabling() planDisabling()
Admin
Planner I
planning[RiD]?

% <+—» Tools

C
planned()
execute[RiD]!

Goal Manager

| p\anningOngoing()J |

I

4. planner plans adaptation

3. analysis identifies MAPE-K Model

Active Model

need for closing lane

Virtual Machine

2. monitor
receives request 5. excute adapts the
map of the robot
- Probes Effectors
1. request to
close lane T l

Robot Manager

4+—P Managed System (Robot)




Level 2 adaptations

Add a new drop location in the warehouse

- Add new part of the map for the robot

- Creates new deadlock situations when
certain lanes are disabled

- Requires adding new representation in K
and adaptations of MAPE functions

R2

E A
®
D B
9

R1

on




Level 2 adaptations

Deal with new deadlock threat (close additional lane): e.g., update planner

E A
R2 o
D B
@
R1

C
L

enableLane() disableLane() && !'waitRequired()

planEnabling() planDisabling()
C

planned()
execute[RiD]!

planningOngoing()

enableLane()
planEnabling()

disableLane() addRequest()
&& IwaitRequired() planAddition()  remRequest()
planDisabling(), && 'waitRequired()

lockExtraNode() planRemoval()

laneDisabled()

&& posUpdated()
lockExtraNode()

planning[RiDJ

planned()
execute[RiD]!

planningOngoing()




Level 2 adaptations

Add a new drop location in the warehouse

1. request to prepare adding
a new destination

-

3. deploy new
model

User

i <4+—P Tools

Engineer :>

verify model

‘ i 2. update and

Goal Manager

T 4. load new model i

8. feedback loop @DO—’O

handles request :" )

Active Model

MAPE-K Model
/\F 5. install new model
Virtual Machine

7. monitor {}

9. excute adapts the
map of the robot

!

Effectors

!

receives request ‘ ’ T
> Probes
6. request to add
destination
Robot Manager
—P

Managed System (Robot)




ActivFORMS summary

Formal active model guarantees verified
properties of the adaption process

Active model directly executes the adaptation:
no coding, no model transformations

Adaptation of adaptation functions:
lightweight process to add new goals

Online detection of goal violations



Tradeoffs

Expert knowledge to desigh and change the
formal models

Modeling is limited by the expressive power of
the modeling language

Language might not be appropriate to model
adaption logic for particular types of systems

Possible performance overhead



Paves the way for future research

Domain specific design primitives to support
the designer

Different modeling languages (e.g.
probabilistic automata to model domain)

Coordination between Active Models in
decentralized setting

Automation goal management by learning
Scalable runtime verification



Overview

* Wrap up



Wrap up: Goals of this tutorial

Understand the notion of self-adaptation

Get familiar with references approaches for
architecture-based self-adaptation

Get familiar with state of the art in formal
methods for self-adaptive systems

Understand the challenges in formal methods
at runtime for self-adaptive systems



Wrap up

Understand the notion of self-adaptation

» Self-adaptation is motivated by the need to deal with
design time uncertainties
 Two key families are

— Control-based self-adaptation: controller design and
analysis based on control theoretic foundation

— Architecture-based self-adaptation: feedback loop reasons
about self-model and adapts system when needed

» Separation between managed and managing system

— Concerns of managed system are about the domain at
hand

— Concerns of managing system are about system



Wrap up
Get familiar with reference approaches for
architecture-based self-adaptation

MAPE-K reference model

— MAPE: primary functions to realize self-adaptation
— K: domain models

Rainbow framework maps reference model to
concrete architecture and implementation

3 layer model of Kramer and Magee

— Component control — adaptation management — goal
management

FORMS: rigorous specified model that integrates
different perspectives on self-adaptation



Wrap up
Get familiar with state of the art formal
methods in self-adaptive systems

Verification at construction time to provide
guarantees about system goals

Model driven approaches to guarantee
conformance between models and
implementation

Recent years a clear trend towards the
application of formal methods at runtime

Dominating focus on probabilistic models of the
domain

Main focus on “parametric uncertainty” (e.g.,
reliability of services change over time)



Wrap up
Understand the challenges on formal methods
at runtime for self-adaptive systems

Guaranteeing domain goals under uncertainty
is one part of assurances of self-adaptation

Guaranteeing correct adaptation behavior is
the other part (lack of attention so far)

Need for solutions that deal with “structural
uncertainty”

— i.e., unanticipated change; e.g., change goals

Scalable runtime verification



Bibliography

B. Cheng et al., Software Engineering for Self-Adaptive Systems: A Research Roadmap, Lecture Notes in
Computer Science, vol. 5525, 2009

P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici, D. Rosenblum, and A.
Wolf, An Architecture-Based Approach to Self-Adaptive Software, IEEE Intelligent Systems, May/June 1999
Kephart and Chess, The vision of autonomic Computing, IEEE Computer, January 2003

D. Garlan, S-W. Cheng, A.C. Huang, B. Schmerl, P. Steenkiste, Rainbow: Architecture- Based Self-
Adaptation with Reusable Infrastructure, IEEE Computer, October 2004

J. Kramer and J. Magee, Self-adaptation: an architecture challenge, Future of Software Engineering, FOSE
2007

D. Weyns, S. Malek, J. Andersson, FORMS: Formal reference model for self-adaptation, ACM Transactions
on Autonomous and Adaptive Systems, TAAS 7(1), 2012

D. Weyns, R. Haesevoets, A. Helleboogh, T. Holvoet, W. Joosen, The MACODO Middleware for Context-
Driven Dynamic Agent Organzations, ACM Transaction on Autonomous and Adaptive Systems, 5(1), 2010.
D. Weyns, U. Iftikhar, D. Gil de la Iglesia, and T. Ahmad, A Survey on Formal Methods in Self-Adaptive
Systemes, Fifth International C* Conference on Computer Science and Software Engineering 2012

J. Zhang and B. Cheng, Model-based development of dynamically adaptive software, International
Conference on Software Engineering, ICSE 2006

I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli. 2009. Model evolution by run-time parameter
adaptation, International Conference on Software Engineering, ICSE 2009

R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tamburrelli. Dynamic QoS Management
and Optimization in Service-Based Systems, IEEE Transactions on Software Engineering, TSE 2011

C. Gheazzi, L.S. Pinto, P. Spoletini, G. Tamburrelli: Managing non-functional uncertainty via model-driven
adaptivity, International Conference on Software Engineering, ICSE 2013

http://homepage.lnu.se/staff/daweaa/ActivFORMS.htm (available from October 15, 2013)




