

Scientific Cloud Computing – Environmental Aspects of Network Infrastructure

Colin Pattinson, Professor in Mobile and Converging Technologies, School of Computing, Creative Technologies & Engineering, Leeds Metropolitan University

Format

- Me, my research
- Performance measurement
- Standard methods
- App stores
- Green IT and energy
- Cloud performance & behaviour

About me

 PhD – Performance measurement of network protocols
 Measure OSI and TCP

Research

Network Management SNMP performance and behaviour Training for network managers Studying manager reaction SNMP overheads Tradeoff between effective management and network load

Performance

Simulation of Wireless LAN Modelling WLAN architecture Performance of mobile agents Performance of MANETs Thin vs. thick client

Standards

For comparison, must use same: Metrics Methods Allows measurement to be Repeatable Verifiable Comparable Qu: What to measure?

What to measure?

- Speed, reliability, accuracy
- Speed
 - Connection time
 - Data rate
 - Disconnect time
- Reliability
 - Successful connection
 - Complete data transfer
- Accuracy
 - Correct connection
 - Correct data transfer

Measuring software

- Speed of operation
- Reliability
- Accuracy
- Energy use?

Off the shelf apps

- "App store"
- Code reuse
- History more features in each new release
- Code sharing / reusable modules
 - Reduced knowledge of internal structure
- E.g. Two methods to do similar task
- Option A is very small lower energy cost (<1%)</p>
- Option B has "better" features
- If all choose B ...

Green / sustainable IT

2% of GHG

10% (and rising) of typical organisation's energy

Later data suggests 20%+
Consider where energy is used
And where savings can be made

Some numbers – data centres

- Energy consumption of data centres grew 63% in 2012 (Datacentre Dynamics)
- Data centres accounted for 14% of ICT carbon dioxide emissions in 2007
 - Projected to be 18% in 2020 (The Climate Group, 2008)
- 1.2 zettabytes of stored digital information (Greenpeace, 2011)
- "If the cloud / internet were a country"
 - 5th in electricity consumption
 - (Greenpeace, 2010)

Some numbers – end systems

- 1.78 bn PCs and 1.82 bn units of browser equipped mobile devices in use by 2013 (Gartner, 2010)
- By 2020, 50% of the world's population will own a mobile phone (Climate Group, 2008)
- 4 bn cellular subscriptions worldwide at the end of 2008, 5 bn by 2011 (ITU, 2010)
- 50 bn internet-connected devices by 2020 (Ericson, 2010)
- 91% of users use their phones to access social networking sites vs. to 79% of desktop users (Read Write Web, 2010)
- Social networks overtook search engines for UK Internet visits in May 2010 (O'Hear, 2010)

Digression – people

Changing behaviour
 Switch off after use
 Print management
 Work patterns

Energy consumption

PC – network – server
Qu: What can be done?

What can be done

- Desktop
 - Power management
- Server
 - Virtualisation
 - Physical layout
 - Environmental control
 - Room temp
 - Cooling units
 - Problem is number of servers
 - Economy of scale
 - Cloud

Cloud - Some Definitions

Poised to succeed where other [efforts] have failed

- Technology review
- The fastest growing part of IT
 - Stanford University
- a game changer ... disrupting traditional software and hardware business models by disrupting how IT service gets delivered
 - Cloud computing expo
- Threatening the business model of Indian IT outsourcing
 - Financial Times 17 August 2009

Or ...

A trap; worse than stupidity
 Richard Stallman, GNU founder
 Fashion-driven; complete gibberish
 Larry Ellison, founder of Oracle
 Both quoted in Guardian 28/9/08

65 years of development?

- "I think there is a world market for maybe 5 computers"
 - Widely attributed to Thomas J. Watson, Chairman of IBM, speaking in1943
- In 2008, the number of PCs in use was
 - 1 billion (Gartner group)
- So what happened?

In the beginning

- Complex, difficult to operate
- Large, expensive
- Data storage?
 - mercury delay
 - magnetic drum

Reserved for important purposes

Pic: Jesty and Peter Jesty Consulting

1981 - The PC

- Possibly the first "game changer"
- Personal computer power
- Personal storage
 - Cassette tape
 - Floppy / hard disc
 - CD
 - Memory stick

Provided you don't lose it!

1980s / 90s - the network

- Computers able to communicate with each other
- Sharing data and programs
- For safety, provide backup "server" storage
- Servers become larger in capacity
- For business use, the "workstation / server" model develops
- For home use, connect to the internet, but retain local disk / memory stick ... storage

2009 - Typical office environment

- Desktop PCs
- Shared servers holding most programs and data, located in a "server room", administered by technical staff
- Server hard disks estimated to be
 10 15% "full" at any time
- Wasteful of storage, money and energy
 10% of the UK's electricity used to power "IT"
 Some estimate 20% of "public sector IT"

Something must be done

Smaller units?

- Little saving in cost and energy
- Fewer units?
 - Virtualisation
 - Running > 1 "logical" server on the same "physical" system
 - Effective in reducing cost and power use
- Simpler desktops
 - If storage (and computing) done by the server more efficiently, no need to have a high-spec desktop

50

- The desktop becomes "just" a terminal
 - Or a mobile; a games console; …
- All the work is done by a server
- All the data is stored on a server
- If these servers are
 - Shared
 - Located "somewhere in the internet"
 - They can be accessed without needing to know their actual location
 - Users can access (and pay for) the computing they use, as they do for other utilities
- We have Cloud computing

Advantages

- Lower equipment first costs
- Lower support and maintenance costs
- Easier access to software and shared data
- Greater ability to share your data
- Access to your data wherever you are, on any suitable device

Disadvantages

- No control over data storage / security
- Lack of flexibility to install new software
- Need to negotiate with external supplier
- Reliance on the network
 - And little chance to influence that
- Geo-political issues
 - Governed by the laws of the country where the server is physically based

What about the network?

- Local switch (wired / wireless)
- Corporate switch / gateway
- Provider edge switch
- Core router(s)
- Core network (fibre)
- Devices always "on", with limited power reduction capability
- Increasing sharing of resource, more difficult to determine "your" energy use

Cloud Savings?

- 55% plan to use Software-as-a-service (SaaS) to reduce energy consumption (Semantec, 2009)
- The mass adoption of cloud computing services like social networking can cut carbon emissions in ways that are not possible to predict (The Climate Group, 2008)
- Adoption of cloud computing will lead to a 38% reduction in worldwide data centre energy expenditure by 2020. ... cloud computing will reduce greenhouse gas emissions by 28% from 2010 levels (Pike research, 2010)
- Companies can save between 30-90% of their energy consumption and carbon footprint on on-premise applications if they move to the cloud (Accenture, 2010)
- Cloud computing business users use 91% less energy than businesses that use on-premise applications (Nucleus Research, 2010)

However ...

If and only if

- local resource saved > cost of network resource used
- For Scientific / HPC
 - More intensive resource use
 - Within facility and across the network
 - Within
 - parallelism / data centre methods
 - Cross-Network
 - Data transfer and storage

Measurements

- Data centre PUE etc.
 - See our current JISC data centre metering project
- End user plug in meters;
 - Plus informal notification (it stops working!)
- Network measurements
 - Power, cooling within wiring closets
 - Distributed across the campus, country, globe
 - Average 10 15 hops

Measuring

Units

Within processors Flops -> flops / W (Green500 list) For data Bits / W (or bytes / W) Watts / bit (ECR initiative) Process Benchmarking? Simulation / estimation? Live measurement?

- An integrated energy measurement system
- Utilising appropriate measurement methods
- Research needed to determine these
 Scope, units and location
 Energy to be key part of the use model
 Hence communicated with the user
 ... and billed!

Requirements

Agreement on measurement units Bits / W Process / reporting Live measurement + estimation Negotiation (SLA) Monetarisation Bits / W -> €, £, \$ Control User choices leeds metropolitan university Management action

Conclusion

- Cloud *may* be energy efficient
 Under certain conditions
 Require a management and use model
 Without measurement
 Cannot verify or operate the system effectively
 - Cannot manage operating load to deliver savings

