Formal Development of
Cooperative Exception Handling for
Mobile Agent Systems

L. Laibinis, E. Troubitsyna
A. lliasov, A. Romanovsky

Abo Akademi University, Turku, Finland
Newcastle University, Newcastle Upon Tyne, UK

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




Outline

» Motivation

» CAMA (Context Aware Mobile Agents) Framework
» Cooperative Recovery and Exception Handling

» Formal Development

>

Conclusions

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




Mobile Agent Systems

» Mobile agents — decentralised and distributed entities,
cooperating to achieve their individual goals

» Agents communicate asynchronously

» The characteristics of such systems:

» have mobile elements (code, devices, data, services, users),
» need to be context-aware,
» are open (i.e., components can appear and disappear)

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




Motivation 4

Need for Cooperative Recovery

» In most agent systems, agents recover from failures locally.
Thus, any failure to recover can lead to agent termination

» In many situations cooperative and iterative recovery is
beneficial for all involved agents

» However, an agent cannot be forced to participate in
cooperative recovery

» The primary objective of an agent is recover itself, then to
recover the environment, and, finally, to recover other agents

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




Our Approach

» Goal — formal development and analysis of cooperative
recovery based on exception handling
» Qur approach relies on combination of:
» formal methods applied for rigorous development of the critical
parts of the system, and
> a set of design abstractions proposed specifically for the open
context-aware applications (CAMA framework)
» Our formal framework — the B Method, supporting formal
refinement-based development of systems

> A set of design abstractions is supported by special middleware

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




Outline
» Overview
» CAMA Framework
» Cooperative Recovery and Exception Handling
» Formal Development
>

Conclusions

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky d@




CAMA Framework

» CAMA — Context Aware Mobile Agents

» Framework for development and deployment of mobile agent
applications

» Supports a set of abstractions for system structuring,
openness and fault tolerance (exception handling)

» Methodology for formal design of open agent systems (based
on the B Method)

» Verification by model checking CAMA process algebra
» CAMA middleware for mobile applications

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




CAMA Architecture

agent

S ;
coordination i coordination
space space

» Coordination via a number of independent coordination
primitives (services)

» Agent communication is based on the Linda paradigm,
providing a shared coordination space between the involved
agents

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




Cama Agent System

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky d@




Cama Framework 10

CAMA Abstractions

Location

Coordination Computation

Location Agent
Platform Role
Scope

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




Cama Framework 11

Abstractions - Location

» The core part of any CAMA system
» Acts as middleware

» Provides means for communication and coordination among
agents

» Possible configuration: a server with wireless networking
running CAMA daemon

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




Abstractions - Agent

» Basic structuring unit of the system

» Autonomous - decisions are made independently of other
agents;

» Cooperative - achieves goals through communication with
other agents;

» An agent is a piece of software that conforms to some formal
specification,

» Each agent is associated with a platform (execution
environment)

» Implements one or more roles (functionalities)

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




Cama Framework 13

Abstractions - Scope

» Structures activity of agents in a specific location

» Provides isolation of several communicating agents, thus
structuring the cooordination space

» Agents can cooperate only when they are participating in the
same scope

» Supports error confinement and localised error recovery

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




Cama Framework 14

Abstractions - Role

Structuring unit of agent functionality
Each agent has one or more roles associated with it

Composition of agent roles forms its specification

vV v.v Yy

Scope definition determine the roles that can participate in it
(ensuring compatibility and inter-operability of cooperating
agents)

» A role is implemented as a number of reactions (events),
which can be triggered by matching tuples in the coordination
space

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




Outline
» Overview
» CAMA Framework
» Cooperative Recovery and Exception Handling
» Formal Development
>

Conclusions

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky d@




Cooperative Recovery and Exception Handling 16

Mechanism of Cooperative Recovery

» Based on exception handling
» Cooperative recovery is attempted within a scope

» While an agent is unable to recover from a failure itself, it
raises an external exception. This starts cooperative recovery
involving all agents of the scope

» All the agents attempt to recover independently

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




Cooperative Recovery and Exception Handling 17

Mechanism of Cooperative Recovery (cont.)

» If recovery succesful (for all agents), the scope proceeds with
normal activity. Otherwise, a new exception can be raised and
broadcasted to the involved agents

» Participation in coordinated recovery is voluntary and the
whole process is asynchronous

» Implemented by extending a role with additional reactions
defining recovery actions

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




Cooperative Recovery and Exception Handling 18

Exception Handling

v

Several exceptions can happen at the same time, so exception
resolution should be supported

New exceptions can arrive when an agent is in recovery
Exceptions can come in different order for different agents
Exception resolution should be context-specific

Agents can get disconnected or disappear during recovery

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




Cooperative Recovery and Exception Handling 19

Termination of Coordinated Recovery

» We introduce a partial order (lattice) on the set of external
exceptions. It is based on exception criticality

» The exception resolution function is based on the lattice
structure

» A lattice has the top element, which guarantees termination
of recovery process

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




Cooperative Recovery and Exception Handling 20

Resolution of Concurrent Exceptions

» When an agent starts its recovery, it could happen that there
are several exceptions waiting. We use the resolution function
to map a set of exceptions into a single one.

» Moreover, resolution should be context-aware as context of an
agent and its internal state can provide hints on choosing a
recovery path

» Mathematically, a new exception is chosen from a set of

common parents of the pending exceptions in the exception
lattice

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




Outline
» Overview
» CAMA Framework
» Cooperative Recovery and Exception Handling
» Formal Development
>

Conclusions

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky d@




The B Method

B supports top-down system development by correctness preserving
steps — refinements. Each refinement step is validated by proofs.
Refinements allows us to incorporate missing implementation
details, at the same time preserving previously stated properties.

MACHINE AM

SETS TYPES
VARIABLES v
INVARIANT /
INITIALISATION INIT
EVENTS

E =

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




Formal Development 23

Formal Development Process

» Application development starts with an abstract specification
of a scope

» It describes the required behaviour of multi-agent application

» In the refinement process, we incorporate implementation
details concerning concrete functionality, communication, and
fault tolerance

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




Formal Development 24

Initial Specification and the First Refinement

@ Stopping

.

oK

OK

5N
o0?

unrecoverable

Stopping

failure

» Abstract model specifies global, high-level view of the system

behaviour

» In the first refinement we introduce representation of various
failure modes, i.e., distinguish between recoverable and

unrecoverable errors

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky

M oio Y%



Formal Development 25

Initial Specification and the First Refinement (cont.)

/N

Recovery

unrecoverable

Stopping

failure

» Upon detecting a recoverable error, the system enters the
Recovery state

» Termination of iterative recovery is proved abstractly, by using
decreasing variant expression

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




Further Refinement Steps

» System functionality and state is distributed over the set of
active agents

» Concrete data structures modelling exceptions and their
communication mechanisms are introduced

» Partial order between concrete exceptions is defined

» The exception resolution mechanism (based on the exception
lattice) is introduced

» Termination is proved by associating abstract variant(s) with
(inverse) criticality of the last generated exception

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




Conclusions 27

Conclusions

» We proposed a mechanism for cooperative recovery (based on
exception handling) in multi-agent systems

» An agent has freedom to decide what role it should play in
recovery process

» We formally verified a mechanism focusing on context-aware
resolution of concurrent exceptions and termination of
coordinated recovery

» The experience from using prototype tool for the CAMA
system shows that the mechanism smoothly integrates with
coordination paradigm and performs well in real applications

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




Thank You!

Questions?

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky d@




	Motivation
	Cama Framework
	Cooperative Recovery and Exception Handling
	Formal Development
	Conclusions

