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Mobile Agent Systems

» Mobile agents — decentralised and distributed entities,
cooperating to achieve their individual goals

» Agents communicate asynchronously

» The characteristics of such systems:

» have mobile elements (code, devices, data, services, users),
» need to be context-aware,
» are open (i.e., components can appear and disappear)
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Need for Cooperative Recovery

» In most agent systems, agents recover from failures locally.
Thus, any failure to recover can lead to agent termination

» In many situations cooperative and iterative recovery is
beneficial for all involved agents

» However, an agent cannot be forced to participate in
cooperative recovery

» The primary objective of an agent is recover itself, then to
recover the environment, and, finally, to recover other agents
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Our Approach

» Goal — formal development and analysis of cooperative
recovery based on exception handling
» Qur approach relies on combination of:
» formal methods applied for rigorous development of the critical
parts of the system, and
> a set of design abstractions proposed specifically for the open
context-aware applications (CAMA framework)
» Our formal framework — the B Method, supporting formal
refinement-based development of systems

> A set of design abstractions is supported by special middleware
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CAMA Framework

» CAMA — Context Aware Mobile Agents

» Framework for development and deployment of mobile agent
applications

» Supports a set of abstractions for system structuring,
openness and fault tolerance (exception handling)

» Methodology for formal design of open agent systems (based
on the B Method)

» Verification by model checking CAMA process algebra
» CAMA middleware for mobile applications
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CAMA Architecture
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» Coordination via a number of independent coordination
primitives (services)

» Agent communication is based on the Linda paradigm,
providing a shared coordination space between the involved
agents
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Cama Agent System
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CAMA Abstractions
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Abstractions - Location

» The core part of any CAMA system
» Acts as middleware

» Provides means for communication and coordination among
agents

» Possible configuration: a server with wireless networking
running CAMA daemon
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Abstractions - Agent

» Basic structuring unit of the system

» Autonomous - decisions are made independently of other
agents;

» Cooperative - achieves goals through communication with
other agents;

» An agent is a piece of software that conforms to some formal
specification,

» Each agent is associated with a platform (execution
environment)

» Implements one or more roles (functionalities)
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Abstractions - Scope

» Structures activity of agents in a specific location

» Provides isolation of several communicating agents, thus
structuring the cooordination space

» Agents can cooperate only when they are participating in the
same scope

» Supports error confinement and localised error recovery
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Abstractions - Role

Structuring unit of agent functionality
Each agent has one or more roles associated with it

Composition of agent roles forms its specification

vV v.v Yy

Scope definition determine the roles that can participate in it
(ensuring compatibility and inter-operability of cooperating
agents)

» A role is implemented as a number of reactions (events),
which can be triggered by matching tuples in the coordination
space

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




Outline
» Overview
» CAMA Framework
» Cooperative Recovery and Exception Handling
» Formal Development
>

Conclusions

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky d@




Cooperative Recovery and Exception Handling 16

Mechanism of Cooperative Recovery

» Based on exception handling
» Cooperative recovery is attempted within a scope

» While an agent is unable to recover from a failure itself, it
raises an external exception. This starts cooperative recovery
involving all agents of the scope

» All the agents attempt to recover independently
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Mechanism of Cooperative Recovery (cont.)

» If recovery succesful (for all agents), the scope proceeds with
normal activity. Otherwise, a new exception can be raised and
broadcasted to the involved agents

» Participation in coordinated recovery is voluntary and the
whole process is asynchronous

» Implemented by extending a role with additional reactions
defining recovery actions
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Exception Handling

v

Several exceptions can happen at the same time, so exception
resolution should be supported

New exceptions can arrive when an agent is in recovery
Exceptions can come in different order for different agents
Exception resolution should be context-specific

Agents can get disconnected or disappear during recovery
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Termination of Coordinated Recovery

» We introduce a partial order (lattice) on the set of external
exceptions. It is based on exception criticality

» The exception resolution function is based on the lattice
structure

» A lattice has the top element, which guarantees termination
of recovery process
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Resolution of Concurrent Exceptions

» When an agent starts its recovery, it could happen that there
are several exceptions waiting. We use the resolution function
to map a set of exceptions into a single one.

» Moreover, resolution should be context-aware as context of an
agent and its internal state can provide hints on choosing a
recovery path

» Mathematically, a new exception is chosen from a set of

common parents of the pending exceptions in the exception
lattice

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky dm




Outline
» Overview
» CAMA Framework
» Cooperative Recovery and Exception Handling
» Formal Development
>

Conclusions

L. Laibinis, E. Troubitsyna, A. lliasov, A. Romanovsky d@




The B Method

B supports top-down system development by correctness preserving
steps — refinements. Each refinement step is validated by proofs.
Refinements allows us to incorporate missing implementation
details, at the same time preserving previously stated properties.
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Formal Development Process

» Application development starts with an abstract specification
of a scope

» It describes the required behaviour of multi-agent application

» In the refinement process, we incorporate implementation
details concerning concrete functionality, communication, and
fault tolerance
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Initial Specification and the First Refinement
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» Abstract model specifies global, high-level view of the system

behaviour

» In the first refinement we introduce representation of various
failure modes, i.e., distinguish between recoverable and

unrecoverable errors
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Initial Specification and the First Refinement (cont.)
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» Upon detecting a recoverable error, the system enters the
Recovery state

» Termination of iterative recovery is proved abstractly, by using
decreasing variant expression
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Further Refinement Steps

» System functionality and state is distributed over the set of
active agents

» Concrete data structures modelling exceptions and their
communication mechanisms are introduced

» Partial order between concrete exceptions is defined

» The exception resolution mechanism (based on the exception
lattice) is introduced

» Termination is proved by associating abstract variant(s) with
(inverse) criticality of the last generated exception
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Conclusions

» We proposed a mechanism for cooperative recovery (based on
exception handling) in multi-agent systems

» An agent has freedom to decide what role it should play in
recovery process

» We formally verified a mechanism focusing on context-aware
resolution of concurrent exceptions and termination of
coordinated recovery

» The experience from using prototype tool for the CAMA
system shows that the mechanism smoothly integrates with
coordination paradigm and performs well in real applications
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Thank You!

Questions?
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