
1

An Evolving Hierarchical & Modular
Approach to Resilient Software

Fernando J. Barros
University of Coimbra
barros@dei.uc.pt

2

Introduction
! Hierarchical and modular software is a sound paradigm to

achieve resilient software
! Modularity provides the basic construct to identify faulty

software units
! Software units have well defined input and output

interfaces
! A faulty modular software unit can be replaced by a new

version
! enables fault correction

3

! The concepts of Hierarchical and Modular Systems design
was formally introduced in the 60’ in General Systems
Theory (Wymore)

! Simula introduced OOP but not modularity

! Modular Simulation formalisms were created in the 70's
Static structure formalisms (Zeigler 76)

! A formal definition (Semantics) of a Discrete Event Dynamic
Structure Formalism was introduced in 90’s (Barros 95)

History

4

! General Systems Theory Based Formalisms
! Hierarchical
! Modular
! Timed-based
! Deterministic

! Deterministic simulations of stochastic systems
! Simultaneous events

! Dynamic Topologies
! Mobility as a particular case

! Closure under the coupling operation
! Uniform handling of both basic and complex entities

! Asynchronous
! But, … offers an awkward model of programming (not suitable for

software engineering)

History

5

History
! Connectons developed in 90s

! A formalism based on Systems Theory
! Keeps key features, but no timed-systems

! Dynamic topology

! Ad-hoc changes

! Hierarchical Mobility

! Based on the request/reply paradigm (OOP)
! A model used in many languages: ST, C++, Java, …

! Web services

! Desmos implementation (Smalltalk)

6

Basic Connecton

M = (inGates, {inSigng}, S, s0, {ag},

outGates, {outSignk}, {outFunctionk})

inGates, set of input gates
inSigng, input-output signature !g " inGates
S, set of states
s0, initial state
ag, an action for ! g " inGates
outGates, set of output gates
outSignk, output-to-input signature ! k " outGates
outFunctionk, output function ! k " outGates

2

7

Basic Connecton
• An input signature is a tuple containing the range set of the incoming

parameters and the range set of outgoing parameters
• If input gate g receives real values R, and responds by sending integer

values I, its input signature is given by inSigng = (R, I)
• An output signature is a tuple containing the range set of the outgoing

parameters and the range set of incoming parameters
• The function ag on input gate g of signature (Ig, Og) is expressed by

• ag: S # Ig $ S # Og
• Actions correspond to methods in the object paradigm

• Output functions convert the set of values received by an output gate
• Useful when several channels are linked to an output gate

8

OR Connecton

OR = ({out}, {(%, B)}, {}, %, {aout}, {(in1, in2)}, {(%, B)}, {(%, B)})

9

Ensemble Connecton

E = (inGates, {inSigng}, {inFunctiong}, &, M&,

outGates, {outSignk}, {outFunctionk})

inGates, set of ensemble input gates
inSigng, input-output signature ! g " inGates
inFunctiong, input-function ! g " inGates
&, ensemble executive
M&, model of the executive
outGates, set of ensemble output gates
outSignk, output-to-input signature ! k " outGates
outFunctionk, output function ! k " outGates

10

Executive Model

M& = (inGates, {inSigng}, S, s0, {ag}, ', (*,

outGates, {outSignk}, {outFunctionk})

': S $ (*, structure function

(= (C, {Mc}, L,)), ! (" (*

C, set of connectons
Mc, model of each connecton ! c " C
L, set of channels
), order function

11

OR Test

OR
in1

in2
out

in1:

in2:

ORTest
Holder::H1value: value

Holder::H2value: value

12

OR Test
MORTest = (inGates, {inSigng}, &, M&, {}, {}, {})

inGates = {{in1:}, {in2:}, {out}}
inSign = {(B, %), (B, %), (%, B)}
M& = ({s0,&}, s0,&, ', (^)

'(s0,&) = (C, {Mc}, L)
C = {H1, H2, OR}
Mc = {MH1, MH2, MOR}
L = {((ORTest, {in1:}), (H1, {value:})),

((ORTest, {in2:}), (H2,{value:})),
((OR, {in1}), (H1, {value})),
((OR, {in2}), (H2, {value})),
((ORTest, {out}), (OR, {out}))}

3

13

Structural Changes
! Topology adaptation has been subject to research in

different areas like software engineering and general
systems theory (simulation)

! The ability to change dynamically a running entity has been
regarded as a powerful construct to build self-adaptive
systems

! Methodologies supporting topology adaptation enable a
representation with structural similarity
! easier to develop and to maintain components

14

Structural Changes

D D

A

D

B

D

A B

a) b)

c) d)

15

Hierarchical Mobility
! The use of hierarchical components in system representation brings a

new problem not present in non-hierarchical systems
! Hierarchical components hide their inner constitution from the outside

! How to expose inner components without violating encapsulation?
! A system accessing the global software topology could modify the inner

structure of any software unit but it will violate encapsulate
! Solutions proposed in systems theory and distributed systems, involve

the use of mobile components
! Components that can be transferred between two hierarchical components

! Inside an ensemble, a mobile component has access to the inner
interface of a hierarchical component
! No violation of encapsulation

! After visiting an ensemble, a mobile component can return with the
gathered information

16

C2

Hierarchical Mobility

C1visible:

hidden:

&&

17

C2

Hierarchical Mobility

C1

&&

New

18

Hierarchical Mobility
! A mobile component can be used to extend the interface of a

hierarchical component
! A mobile component can be used to modify/fix the behavior of

a hierarchical component
! A mobile component can be employed in a local

reconfiguration bringing new behavior to an ensemble
! The mobile component may become permanently part of

the visited ensemble

4

19

Hierarchical Mobility
! Mobility requires the capability to remove a component from an

ensemble and the ability to transmit it to another hierarchical
component

! Transmission is achieved by message passing

! The visited ensemble needs to add the mobile component and
to establish new links between the existing Connectons and
the visiting one

20

Hierarchical Mobility

M&

send:

BA

N&in:

C

receive:

out: M&

send:

B

N&in:

C

receive:

out:

A

A

21

Desmos Primitives

! add: aName model: aModel
! adds to the ensemble a connecton named aName and associate it with

model aModel
! addConnecton: aConnecton

! adds an existing connecton
! remove: aConnecton

! removes a connecton
! link: aName gate: aGate to: bName gate: bGate

! links a Connecton named aName gate aGate to gate bGate of
Connecton named bName

! unlink: aName gate: aGate from: bName gate: bGate
! unlinks a Connecton named aName gate aGate from gate bGate of

Connecton bName

22

Observer(Voting)

xy:

Location

Position::A
xy:init:

time:ax:ay:

time:ax:ay:

update:name: fault:

fault:

Comparator
xyz: xyz:

fault:

update:name: fault:

Position::B
xy:init:

time:ax:ay:

Position::C
xy:init:

time:ax:ay:

23

Observer
Location>>structure

super structure.
"Adds redundant Position connectons"
self add: #A model: Position.
self add: #B model: Position.
self add: #C model: Position.
"Adds fault detector"
self add: #CP model: Comparator.
"Link definition"
self link: #Network gate: #update:name: to: #Executive gate: #update:name:.
self link: #Executive gate: #fault: to: #Network gate: #fault:.
self link: #Executive gate: #time:ax:ay: to: #A gate: #time:ax:ay:.
self link: #Executive gate: #time:ax:ay: to: #B gate: #time:ax:ay:.
self link: #Executive gate: #time:ax:ay: to: #C gate: #time:ax:ay:.
self link: #CP gate: #fault: to: #Executive gate: #fault:.
"Reverse filters map 3D to 2D coordinates"
self link: #Network gate: #xy: to: #CP gate: #xyz: rFilter: [:xyz| xyz toXY].
self link: #A gate: #init: to: #CP gate: #xyz: rFilter: [:xyz| xyz toXY].
self link: #B gate: #init: to: #CP gate: #xyz: rFilter: [:xyz| xyz toXY].
self link: #B gate: #init: to: #CP gate: #xyz: rFilter: [:xyz| xyz toXY].
"Reverse filters map 2D to 3D coordinates"
self link: #CP gate: #xyz: to: #A gate: #xy: rFilter: [:xy| xy @ 0 @ #A].
self link: #CP gate: #xyz: to: #B gate: #xy: rFilter: [:xy| xy @ 0 @ #B].
self link: #CP gate: #xyz: to: #C gate: #xy: rFilter: [:xy| xy @ 0 @ #C].

24

Observer

xy:

Location

Position::A
xy:init:

time:ax:ay:

time:ax:ay:

update:name: fault:

fault:

Comparator
xyz: xyz:

fault:

update:name: fault:

Position::C
xy:init:

time:ax:ay:

5

25

Observer
LocationExecutive>>fault: aName

|faulty|
faulty := self remove: aName. "Removes connecton aName and all its links"
out fault: faulty. "Sends faulty as a mobile connecton“

LocationExecutive>>update: aPosition name: aName
self add: aPosition name: aName. "Adds a mobile connecton"
self link: #Executive gate: #time:ax:ay: to: aName gate: #time:ax:ay:.
self link: aName gate: #init: to: #CP gate: #x:y:z: rFilter: [:xyz| xyz asXY].
self link: #CP gate: #xyz: to: aName gate: #xy: rFilter: [:xyz| xy @ 0 @ aName].

26

Observer

xy:

Location

Position::A
xy:init:

time:ax:ay:

time:ax:ay:

update:name: fault:

fault:

Comparator
xyz: xyz:

fault:

update:name: fault:

Position::K
xy:init:

time:ax:ay:

Position::C
xy:init:

time:ax:ay:

27

Conclusions
! We propose an approach to the representation of resilient software

based on modular software units.

! Modularity enables the identification of faulty software units and their
replacement with improved versions.

! Hierarchical mobility provides a sound construct to bring the updated
version of faulty units, while keeping the encapsulation of
hierarchical software.

! Hierarchical mobility enables online error correction while keeping
the software running.

