An Evolving Hierarchical & Modular
Approach to Resilient Software

Fernando J. Barros
University of Coimbra
barros@dei.uc.pt

Introduction

e Hierarchical and modular software is a sound paradigm to
achieve resilient software

e Modularity provides the basic construct to identify faulty
software units

« Software units have well defined input and output
interfaces

» A faulty modular software unit can be replaced by a new
version

enables fault correction

History

e The concepts of Hierarchical and Modular Systems design
was formally introduced in the 60’ in General Systems
Theory (Wymore)

e Simula introduced OOP but not modularity

e Modular Simulation formalisms were created in the 70's
Static structure formalisms (Zeigler 76)

e A formal definition (Semantics) of a Discrete Event Dynamic
Structure Formalism was introduced in 90’s (Barros 95)

History

e General Systems Theory Based Formalisms
« Hierarchical
* Modular
« Timed-based
« Deterministic
Deterministic simulations of stochastic systems
Simultaneous events
« Dynamic Topologies
Mobility as a particular case
« Closure under the coupling operation
Uniform handling of both basic and complex entities
« Asynchronous

« But, ... offers an awkward model of programming (not suitable for
software engineering)

History

e Connectons developed in 90s

»- A formalism based on Systems Theory
Keeps key features, but no timed-systems
Dynamic topology
Ad-hoc changes
Hierarchical Mobility

» Based on the request/reply paradigm (OOP)
A model used in many languages: ST, C++, Java, ...
Web services

« Desmos implementation (Smalltalk)

Basic Connecton

M= (inGates, {inSigng}, S, sy, {agh

outGates, {outSign,}, {outFunct/onk})

inGates, set of input gates

inSigny, input-output signature Vg e inGates

S, set of states

Sy, initial state

a,, an action for V g e inGates

outGates, set of output gates

outSign,, output-to-input signature V k € outGates
outFunction,, output function V k € outGates

Basic Connecton

An input signature is a tuple containing the range set of the incoming
parameters and the range set of outgoing parameters
If input gate g receives real values R, and responds by sending integer
values I, its input signature is given by inSign, = (R, I)
An output signature is a tuple containing the range set of the outgoing
parameters and the range set of incoming parameters
The function a, on input gate g of signature (/,, O,) is expressed by
a, Sxlg—> Sx 0,
Actions correspond to methods in the object paradigm
Output functions convert the set of values received by an output gate
Useful when several channels are linked to an output gate

OR Connecton

in
OR out[
ﬂ in2

OR = ({out}, {(¢, B)}. {} 4, {acu {(in1, in2)}, {(4, B)}, {(¢, B)})

Ensemble Connecton

E= (inGates, {inSigng}, {inFunctiong}, & M,,

outGates, {outSign,}, (outFunctionk))

inGates, set of ensemble input gates

inSign,, input-output signature V g e inGates
inFunction,, input-function V g € inGates

& ensemble executive

M,, model of the executive

outGates, set of ensemble output gates

outSign,, output-to-input signature V k e outGates
outFunction,, output function V k € outGates

Executive Model

M, = (inGates, {inSigng}, S, sy, {ag), o, Z',

outGates, {outSign,}, {outFunctionk})

o: S — ¥, structure function

2=(C {M},L,E).vZesx
C, set of connectons
M,, model of each connecton V c € C
L, set of channels
E, order function

OR Test

ORTes
in1: u—»]value: Holder::H1 value[-

in2:]—»]value: Holder::H2 value[<—[in2

OR Test

Mogres: = (inGates, {inSigng}, & M, {1, ¢ 0)
inGates = {{in1:}, {in2:}, {out}}
inSign ={(B, ¢), (B, ¢). (¢4, B)}
M, = ({So.} So.0 02 %)
a(s,,) = (C, {M}, L)
C={H1, H2, OR}
M, = {My1, My, Mog}
L = {((ORTest, {in1:}), (H1, {value:})),
((ORTest, {in2:}), (H2,{value:})),
((OR, {in1}), (H1, {value})),
((OR, {in2}), (H2, {value})),
((ORTest, {out}), (OR, {out}))}

Structural Changes

e Topology adaptation has been subject to research in
different areas like software engineering and general
systems theory (simulation)

e The ability to change dynamically a running entity has been
regarded as a powerful construct to build self-adaptive
systems

e Methodologies supporting topology adaptation enable a
representation with structural similarity

« easier to develop and to maintain components

Structural Changes

| 0 | | o |

a) b)

| o | | o |

==

c) d)

Hierarchical Mobility

e The use of hierarchical components in system representation brings a
new problem not present in non-hierarchical systems

e Hierarchical components hide their inner constitution from the outside
» How to expose inner components without violating encapsulation?

« A system accessing the global software topology could modify the inner
structure of any software unit but it will violate encapsulate

e Solutions proposed in systems theory and distributed systems, involve
the use of mobile components

« Components that can be transferred between two hierarchical components

¢ Inside an ensemble, a mobile component has access to the inner
interface of a hierarchical component

« No violation of encapsulation

e After visiting an ensemble, a mobile component can return with the
gathered information

Hierarchical Mobility

visible:

Hierarchical Mobility

Hierarchical Mobility

e A mobile component can be used to extend the interface of a
hierarchical component

e A mobile component can be used to modify/fix the behavior of
a hierarchical component

e A mobile component can be employed in a local
reconfiguration bringing new behavior to an ensemble

» The mobile.component may become permanently part of
the visited ensemble

Hierarchical Mobility Hierarchical Mobility

o Mobility requires the capability to remove a component from an
ensemble and the ability to transmit it to another hierarchical
component

send: send:

e Transmission is achieved by message passing

e The visited ensemble needs to add the mobile component and
to establish new links between the existing Connectons and
the visiting one

I
receive: -

receive:

Observer(Voting)

update:name: fault:

Desmos Primitives

e add: aName model: aModel

* adds to the ensemble a connecton named aName and associate it with Location, fault: |
model aModel

o addConnecton: aConnecton
* adds an existing connecton
e remove: aConnecton 5 »
e removes a connecton init: XYC init: XYE init: XYE
o link: aName gate: aGate to: bName gate: bGate TE
« links a Connecton named aName gate aGate to gate bGate of

update:name: fault:

time:ax:ay:

timezax:ay:

Connecton named bName e
e unlink: aName gate: aGate from: bName gate: bGate 1l
« unlinks a Connecton named aName gate aGate from gate bGate of
Connecton bName
2 2

Observer ob

Location>>structure s e e r
super structure. Updateiname: _ fauit;
"Adds redundant Position connectons™
self add: #A model: Positii —
self add: #B model: Position. update:name: fault:
self add: #C model: Position. Location, fau:]

"Adds fault detector”
self add: #CP model: Comparator.
"Link definition”

time:ax:ay:

self link: #Net gate: to: ive gate:
self link: #Executive gate: #fault: to: #Network gate: #fault:.
self link: ive gate: #til to: #A gate:

self link: ive gate: #til to: #B gate:

self link: ive gate: to: #C gate:

self link: #CP gate: #fault: to: #Executive gate: #fault:.

“Reverse filters map 3D to 2D coordinates"”

self link: #Network gate: #xy: to: #CP gate: #xyz: rFilter: [:xyz| xyz toXY].
self link: #A gate: : #CP gate: #xyz: rFilter: [:xyz| xyz toXY]. e
self link: #B gate: #init: #CP gate: #xyz: rFilter: [:xyz| xyz toXY]. xyz xyz
self link: #B gate: #init: to: #CP gate: #xyz: rFilter: [:xyz| xyz toXY].
"Reverse filters map 2D to 3D coordinates"”

self link: #CP gate: #xyz: to: #A gate: #xy: rFilter: [:xy| xy @ 0 @ #A].
self link: #CP gate: #xyz: to: #B gate: #xy: rFilter: [:xy| xy @ 0 @ #B].
self link: #CP gate: #xyz: to: #C gate: #xy: rFilter: [:xy] xy @ 0 @ #C].

Observer

Observer
update:name: fault:
LocationExecutive>>fault: aName T
|faulty| -
faulty := self aName. " aName and all its links" update:name:
out fault: faulty. "Sends faulty as a mobile connecton® Location, fauit: [}

time:ax:ay:

LocationExecutive>>update: aPosition name: aName
self add: aPosition name: aName. "Adds a mobile connecton”
self link: #Executive gate: #time:ax:ay: to: aName gate: #time:ax:ay:.
self link: aName gate: #init: to: #CP gate: #x:y:z: rFilter: [:xyz| xyz asXY]. it X e 9 ity
self link: #CP gate: #xyz: to: aName gate: #xy: rFilter: [:xyz| xy @ 0 @ aName]. ek
xy:

Conclusions

e We propose an approach to the representation of resilient software
based on modular software units.

e Modularity enables the identification of faulty software units and their
replacement with improved versions.

e Hierarchical mobility provides a sound construct to bring the updated
version of faulty units, while keeping the encapsulation of
hierarchical software.

e Hierarchical mobility enables online error correction while keeping
the software running.

