
9th International Workshop on Software Engineering for Resilient Systems
September 4-5, 2017, Geneva, Switzerland
Prof. Dr. Jorge Cardoso
University of Coimbra
Portugal

Cloud Reliability
Decreasing outage frequency using fault injection

Chief Architect for Cloud Operations and Analytics
Huawei Research, Munich
Germany

2

l Title: Cloud Reliability: Decreasing outage frequency using fault injection

l Abstract: In 2016, Google Cloud had 74 minutes of total downtime, Microsoft Azure had 270 minutes, and 108 minutes
of downtime for Amazon Web Services (see cloudharmony.com). Reliability is one of the most important properties of a
successful cloud platform. Several approaches can be explored to increase reliability ranging from automated
replication, to live migration, and to formal system analysis. Another interesting approach is to use software fault
injection to test a platform during prototyping, implementation and operation. Fault injection was popularized by Netflix
and their Chaos Monkey fault-injection tool to test cloud applications. The main idea behind this technique is to inject
failures in a controlled manner to guarantee the ability of a system to survive failures during operations. This talk will
explain how fault injection can also be applied to detect vulnerabilities of OpenStack cloud platform and how to
effectively and efficiently detect the damages caused by the faults injected.

l Acknowledgments: This research was conducted in collaboration with Deutsche Telekom/T-Systems and with Ankur
Bhatia from the Technical University of Munich to analyze the reliability and resilience of modern public cloud platforms.

Executive Summary

l Short CV: Dr. Jorge Cardoso is Chief Architect for Cloud Operations and Analytics at
Huawei’s German Research Centre (GRC) in Munich. He is also Professor at the University
of Coimbra since 2009. In 2013 and 2014, he was a Guest Professor at the Karlsruhe
Institute of Technology (KIT) and a Fellow at the Technical University of Dresden (TU
Dresden). Previously, he worked for major companies such as SAP Research (Germany) on
the Internet of services and the Boeing Company in Seattle (USA) on Enterprise Application
Integration. Since 2013, he is the Vice-Chair of the KEYSTONE COST Action, a EU
research network bringing together more than 70 researchers from 26 countries. He has a
Ph.D. in Computer Science from the University of Georgia (USA).

3

Huawei at a Glance

4

Winning Consumer Loyalty and
Building Brand Influence

5

Globalized Resource Deployment and
Localized Business Operations

6

Huawei Public Cloud Products and Services

Compute
Elastic
Cloud
Server

Image
Mgmt
Service

Auto
Scaling Container

Service Dedicated Cloud Service

Storage

Elastic IP

Elastic
Volume
Service

Object
Storage
Service

Elastic
Load
Balance

Virtual
Private
Cloud

Volume
Backup
Service

Management &
Deployment

Cloud Eye Identity and
Access
Management

Direct
Connect

MaaS

Network DNS

Security Anti-DDoS

Database

Enterprise
Application

Relational
Database
Service

Workspace SAP Hana/SAP
Suite (IaaS)

MapReduce

Solution SAP Hana/SAP
Suite (IaaS)

7

Global Deployment of Public Cloud Services

u Huawei Enterprise Cloud (HEC) public cloud regions include Langfang and Suzhou in China.
l Open Telefonica Cloud worldwide regions include Mexico, Brazil, Chile, USA, Spain, Peru, Argentina, and Colombia.
n China Telecom Cloud (CTC) public cloud regions include Guizhou and Beijing in China.
▲ Orange Cloud Business (OBS) public cloud regions include France, Singapore, USA, Holland, and Africa.
u Open Telekom Cloud (OTC), Germany

Mexico

Brazil

Chile

Colombia

USA

Peru

Spain

2016 Q1

2016 Q4

Argentina

2017 Jan

2017 July

France

Singapore

USA

Holland

Africa Region 2018 Jan

Beijing

Guizhou

Langfang

Suzhou

2015 Q2

Germany

8

OpenLab Munich

9

Fault Injection into Clouds

Enables to Automatically Test and Repair OpenStack and Cloud
Applications

CLOUD APPLICATION

HUAWEI FusionSphere

The system works by intentionally injecting different failures, test the ability to survive
them, and learn how to predict and repair failures preemptively

Failure

Repair

Test

10

OpenStack Architecture

nova-api nova-compute L2	agent L3	agentDHCP	agent

11

Fault Injection Plans

Director

Create
VM

1

I: None
O: VM name
N: 1/controller

Deployer

Update
DB

1

I: None
O: None
N: 1/controller

Selector

Get
compute

PPID

1

I: None
O: (node, pid)+
N: 1/controllers

V: 1/nova-comp.

mon-fri: 9h-17h, every
3h

Observer

Wait for
State

1

I: VM name
O: VM name,
state
N: 1/controller

V: 1/{ networking,
block_device_ma
pping, spawning}

Injector

Inject
Fault

1

I: (node, pid)+
O: none

V: 1/{SIGKILL,
SIGTERM,
SIGINT}

Detector

Check
VM

State?

1

I: VM name
O: VM state
N: 1/controller

Cleaner

Delete
VM

1

I: VM name
O: None
N: 1/localhost

(node, pid)+ VM_name

VM_name

FIP Scenario Get PPID Variability Inject Fault Variability Wait for State Variability 2 Result

ID12 Create VM Controller One of
controller
services

Send signal
to process

Signal {SIGKILL,
SIGTERM,
SIGINT}

Loop, read status,
sleep

States { networking,
block_device_mapping,
spawning}

T1 Create VM B_xzy Controller nova-compute Send signal SIGKILL Wait for networking OK

T2 Create VM B_jsk Controller nova-api Send signal SIGTERM Wait for block_device_mapping NOK

T999

Rapporteur

Generat
e Report

1

I: data pipeline
O: None
N: 1/localhost

Variability

12

l With improvements in processing power, network and storage technologies, cloud
platforms have witnessed an unprecedented growth in complexity.

l Due to the increase in complexity, the need to efficiently diagnose failures in
cloud platforms has also risen.

l Because of these challenges, cloud operators often develop new sets of tests to
diagnose failures.

l But as mentioned before, cloud platforms are continuously evolving. They
undergo modification and frequent updates, and have periodic release cycles.
Hence, the tests developed become outdated and there is a constant need to
modify them when a new release is available. Therefore, this approach is costly
for the cloud operators.

Background - Requirement

Work done In collaboration with Ankur Bhatia from Technical University of Munich (TUM), Germany

13

l As with most software, the validation of all the modules of a cloud platform is
done through a test suite containing a large number of unit tests. It is a part of
the software development process where the smallest testable part of an
application, called unit, along with associated control data are individually and
independently tested.

l Executing unit tests is a very effective way to test code integration during the
development of software. They are often executed to validate changes made by
developers and to guarantee that the code is error free.

l Although unit tests are extremely useful for the purpose of development and
integration, they are not meant to diagnose failures.

Solution

14

Fault Injection Plans

Director

Create
VM

1

I: None
O: VM name
N: 1/controller

Deployer

Update
DB

1

I: None
O: None
N: 1/controller

Selector

Get
compute

PPID

1

I: None
O: (node, pid)+
N: 1/controllers

mon-fri: 9h-17h, every
3h

Observer

Wait for
State

1

I: VM name
O: VM name,
state
N: 1/controller

Injector

Inject
Fault

1

I: (node, pid)+
O: none

Detector

Check
VM

State?

1

I: VM name
O: VM state
N: 1/controller

Cleaner

Delete
VM

1

I: VM name
O: None
N: 1/localhost

VM_name

Rapporteur

Generat
e Report

1

I: data pipeline
O: None
N: 1/localhost

Unit	tests. It	is	a	part	of	the	
software	development	
process	where	the	smallest	
testable	part	of	a	cloud	
platform,	called	unit,	along	
with	associated	control	data	
are	individually	and	
independently	tested.	

Failure	diagnosis	system.	
Diagnoses	failures	in	cloud	
platforms	making	use	of	unit	
tests	and	helps	to	detect	
nonresponsive	and	failed	
services.	

Unit	tests	for	failure	
diagnosis.	Reuse	the	already	
developed	unit	tests	to	test	
a	cloud	platform	at	runtime.	

15

Using unit tests for failure diagnosis
presents a set of challenges

l Unit tests do not provide any information
about the nonresponsive or failed services in
cloud platforms.

p The execution of unit tests generates a list of
passed and failed tests. This list can help to
locate software errors or to find issues with
individual modules of the code but cannot
diagnose failures as there are no relationships
between unit tests and services running on a
cloud platform.

l With the increase in codebase of cloud
platforms, the number of unit tests also
increases. Thus, it takes a considerable
amount of time to execute them.

Challenges
Experiments

l OpenStack has more than 1500 unit tests

l Used for development and integration

l Only validate APIs

l Time consuming
p E.g., unit tests to create a VM, uploading a large

operating system image, etc., need a few minutes to
execute.

p It can take up to 3 to 4 hours to execute all unit tests.
Considering the reliability requirements of 99.95%,
cloud platforms can have a downtime of only 21.6
minutes per month.

p Hence, the time required to execute unit tests is
considerably high.

l Not able to directly detect services that are
not functioning as expected

16

The approach of 3 phases efficiently
diagnoses a cloud platform

l 1. Reduce the number of unit tests using
the set cover algorithm

l 2. Establish relationships between the
reduced unit tests and the services running
on a cloud platform. These relationships
help to determine nonresponsive or failed
services. This is done by simulating failure
of services in cloud platforms and running
unit tests in this environment.

l 3. Construct a decision tree based on these
relationships to select the unit tests that are
most relevant to diagnose failures. The ID3
algorithm is used to construct a decision
tree.

General Approach
Results

l The approach diagnoses failures by running
only 4-5% of the original unit tests.

17

l Unit Tests Reduction (Phase 1). Reduce the number of unit tests written during the code
development

l Service Mapping (Phase 2). Establish relationships between the reduced unit tests and
services. It further reduces the number of unit tests based on these relationships

l Sequential Diagnosis (Phase 3). Use relationships to construct a decision tree to select the
most relevant unit tests to diagnose failures

General Approach

tempest.api.volume.admin.test_volume_types_negative.Vol
umeTypesNegativeV2Test.test_create_with_empty_name
tempest.api.volume.admin.test_volume_types_negative.Vol
umeTypesNegativeV2Test.test_create_with_nonexistent_vo
lume_type
tempest.api.volume.admin.test_volume_types_negative.Vol
umeTypesNegativeV2Test.test_delete_nonexistent_type_id
tempest.api.volume.admin.test_volume_types_negative.Vol
umeTypesNegativeV2Test.test_get_nonexistent_type_id
tempest.api.volume.admin.test_volume_types_negative.Vol
umeTypesNegativeV2Test.test_create_with_empty_name
empest.api.volume.admin.test_volume_types_negative.Volu
meTypesNegativeV2Test.test_create_with_nonexistent_vol
ume_type
tempest.api.volume.admin.test_volume_types_negative.Vol
umeTypesNegativeV2Test.test_delete_nonexistent_type_idt
empest.api.volume.admin.test_volume_types_negative.Volu
meTypesNegativeV2Test.test_create_with_empty_name
tempest.api.volume.admin.test_volume_types_negative.Vol
umeTypesNegativeV2Test.test_create_with_nonexistent_vo
lume_type
tempest.api.volume.admin.test_volume_types_negative.Vol
umeTypesNegativeV2Test.test_delete_nonexistent_type_id
tempest.api.volume.admin.test_volume_types_negative.Vol
umeTypesNegativeV2Test.test_get_nonexistent_type_id
tempest.api.volume.admin.test_volume_types_negative.Vol
umeTypesNegativeV2Test.test_create_with_empty_name
empest.api.volume.admin.test_volume_types_negative.Volu
meTypesNegativeV2Test.test_create_with_nonexistent_vol
ume_type
tempest.api.volume.admin.test_volume_types_negative.Vol
umeTypesNegativeV2Test.test_delete_nonexistent_type_id

Unit Tests
Reduction

tempest.api.volume.admin.test_volume_types_n
egative.VolumeTypesNegativeV2Test.test_creat
e_with_empty_name
tempest.api.volume.admin.test_volume_types_n
egative.VolumeTypesNegativeV2Test.test_creat
e_with_nonexistent_volume_type
tempest.api.volume.admin.test_volume_types_n
egative.VolumeTypesNegativeV2Test.test_delet
e_nonexistent_type_id
tempest.api.volume.admin.test_volume_types_n
egative.VolumeTypesNegativeV2Test.test_get_
nonexistent_type_id Service

Mapping
Sequential
Diagnosis

Reduced unit testsUnit tests

Phase 1 Phase 2 Phase 3

Decision tree

Faulty
Service

Service mapping

1 0 1

1 0 0

t1

s1 s2

1

1tm
..

sn

18

l Identify modules (1/5)
p Identify the modules available in the unit test framework

l Construct Abstract Syntax Tree (2/5)
p For each module, an AST is constructed to establish a

relationship between unit test methods and support
methods

l Filter AST (3/5)
p All irrelevant support methods are filtered out from the

AST using a Inverse Document Frequency

l Support method deduplication (4/5)
p Unit test methods that perform redundant operations

are eliminated by finding the minimum set cover. Time
to execute an unit test is the cost of a set

l Cross module deduplication (5/5)
p Unit test methods from one module are compared with

methods of other modules and are further reduced

Phase 1 - Unit Test Reduction

List of
all unit
tests

List of all
modules

Identify
modules

Construct AST Filter AST

Support
method

de-duplication

Abstract
Syntax Tree

Final
reduced
unit tests

Eliminate
redundant unit
test methods

across modules

Eliminate
redundant unit
test methods

within modules

Reduced
unit tests

Filtered
AST

Unit test manager

Identify irrelevant
support methods

Cross module
de-duplication

19

l Identify modules (1/5)
p A module is the source file which contains

the definition of the unit test method

l Construct AST (2/5)
p For all the modules construct an AST

l Traversed the AST to identify unit test
methods and their support methods

l For each unit test method, a set of its
support methods is created:
p test_create_flavor: {create_flavor,

assertEqual}
p test_delete_flavor: {create_flavor,

delete_fl, assertTrue}

Phase 1 (1-2/5)

tempest.api.compute.flavors.test_flavors.			Flavors.																									test_create_flavor

Class name Unit test
method

Path of the module:
tempest/api/compute/flavors/test_flavors.py

Part	1 Part	2 Part	3

A	simple	AST

class Flavors (base.Test):

def test_create_flavor(self):

new_flavor_id = self.create_flavor()

self.assertEqual(new_flavor_id, flavor_id)

def test_delete_flavor(self):

flavor = self.create_flavor(flavor_name)

del_flavor = self.delete_fl(flavor)

self.assertTrue(some_statement)

A	Python	module	(test_flavor.py)	containing	the	
implementations	of	unit	tests

test_flavor.py

Flavors

test_create_
flavor

test_delete_
flavor

Assert
Equal

create_
flavor delete_fl assertTruecreate_

flavor

Module

Class

Unit test
methods

Support
methods

Note: Apart from the nodes shown in the figure, an AST
contains other nodes like variables, constructors, etc.
Since they are not relevant to us, they are excluded for
simplicity.

Identify Module & Construct AST

20

Phase 1 (3/5)

l Support methods are eliminated
p Some of the support methods are specific

to the unit test framework
p E.g., assertEquals

l Use Inverted Document Frequency
(IDF) technique
p Higher occurrence -> lower IDF

l Calculated IDF for support methods
p Set of documents = ASTs of modules

l Eliminate support methods having a
IDF below a threshold alpha
p These support methods identified do not

play any role in the reduction of the unit
tests

p They are irrelevant

Module 1

Class A:
def

U1(self):
Assert()
S1()

def
U2(self):

S2()
S3()

Class B:
def

U3(self):
S2()
S3()

AST construction

Unit test
methods

Support
Methods
(words)

Class Class

U1

Module

S1 S2 S1

U2 U3

Asser
t

Filter AST

21

Phase 1 (3/5)

IDF(x)	=	log	(#	documents/	#	documents	with	word	x)

Unit test
methods

Support
Methods
(words)

Document 1 Document 2 Document 3 Document 4

Class Class

U1

Module

S1 S2 S1

U2 U3

Class Class

U4

Module

S3Asser
t

S2 S3

U5 U6

Class Class

U7

Module

S5Asser
t

S5 S5

U8 U9

Class Class

U10

Module

S6Asser
t

S7 S18

U11 U12

Asser
t

§ The	support	methods	Assert is	present	in	all	the	modules	->	its	IDF	is	log(4/4)	=	0

§ Similarly,	IDF	for	S1 is	log(4),	S2 is	log(2)

§ Thus,	Assert	is	irrelevant.		It	is	eliminated	from	the	list	of	support	methods.

22

Phase 1 (4/5)

l Each module has unit test methods which
call support methods

l In most cases, a subset of the unit test
methods call all the support methods

l Thus, some unit test methods are
redundant

l Prune the ASTs constructed
p Pruning is done using the minimum set cover

l Two important parameters: cost and
coverage
p Cost is the time a unit test takes to execute
p Coverage is the percentage of support methods

to consider in the set cover

Support method deduplication

23

Phase 1 (4/5)
Support method (S) and time in seconds for each
Unit test method (U)

U1 : {S1 , S3}, 15
U2 : {S1 , S3,} ,8
U3 : {S2}, 9

Class A

U1

Module 1

S1

U2 U3

Class B

S1 S3 S2S3

Loop 1:
a1 = 15/2
a2 = 8/2
a3 = 9/1

I = {S1, S3}

Class A

Module 1

U2

Class B

S1 S3

Loop 1:
a1 = 15/2
a2 = 8/2
a3 = 9/1

I = {S1, S3}

Loop 2:
a1 = 15/0
a2 = 8/0
a3 = 9/1

I = {S1, S2, S3}

Class A

Module 1

U2 U3

Class B

S1 S3 S2

Minimum coverage requested = 100 %
U = {S1 , S2 , S3}
Required set = all elements of U

Minimum coverage requested = 50 %
U = {S1 , S2 , S3}
Required set = é(50/100) * 3ù = 2

Coverage obtained: 66.6 %Coverage obtained: 100 %

In case 2, the minimum requested is 50% so any
2 support methods out of 3 are sufficient. U2
contains 2 distinct support methods and has the
least cost. Hence, U1 and U3 are eliminated.

In case 1, minimum coverage is100 %, so all the
support methods must be present. U2 and U3
covers all the distinct support methods and has
the least cost. Hence, U1 is eliminated.

24

Phase 1 (5/5)

U5 : {S4, S5} U10 : {S4}
U11 : {S10, S4}
U12 : {S12, S5}

§ The support method de-duplication subsystem guarantees
that {S4, S5, S10, S12} are called by the subset of the unit
test methods in Module 4

§ All the support methods called by U5 (i.e., {S4, S5}) are
already covered in Module 4.

§ Hence, U5 is redundant and can be eliminated

Cross module deduplication

§ The AST pruning reduces the unit test methods by finding the minimum set cover of the support methods in the same
module. However, some unit test methods are covered in other modules

§ Thus, the reduction can be improved without losing the coverage

§ Cross module deduplication compares the support methods of a unit test method from one module with the universe
of the support methods of other modules

Module 4

Class G:
def U10(self):

Assert()
S4()

def U11(self):
S10()
S4()

Class H:
def U12(self):

S12()
S5()

Module 2

Class C:
def U4(self):

Assert()
S2()

def U5(self):
S4()
S5()

Class D:
def U6(self):

S4()
S7()

Our experiment with OpenStack enabled us to reduce 1391 unit tests
created by developers to 538 tests with 100% coverage

25

Phase 2

Reduced set of unit
tests from Phase 1

Unit test and
service mapping

Isomorphic unit
test elimination

Test service mapper
Matrix

representing
relationships
between unit

tests and
testability of

services

Reduced matrix representing
relationships between unit

tests and testability of services

Service Mapping
One of the major challenges of using unit tests for failure diagnosis is the lack of relationships between unit tests and services
running on cloud platforms. The execution of unit tests outputs a list of passed, failed and skipped tests.

§ Establish a relation between the unit tests and the services they can test

§ Isomorphic unit test elimination

un
it

te
st

 U
i

un
it

te
st

 U
i

Experiment: 20 OpenStack services running and 538 unit tests after
reduction from Phase 1. At the end of Phase 2, the isomorphic test
elimination procedure reduced the number of test to 25.

For each service s:
1. Disable s (stop/shutdown)

to simulate a failure of a
service in a cloud platform

2. Run reduced set of unit
tests. Unit tests that
depend on service s will
fail. Record result.

3. Enable s (start)

The execution time for unit tests U1 is 10 seconds, U2 is 9
seconds, U3 is 13 seconds, U4 is 19 seconds and U5 is 3
seconds. Hence, U1, U5 and U2 are selected

26

Phase 3

unit test 3

unit test 2 unit test 4

unit test 1

unit test 5

service 1 service 2
service 5 service 5

service 3 service 1
service 4

fail

fail fail

fail

fail

pass

pass

pass

pass

Sequential Diagnosis
The main task of this phase is to analyze these relationships by constructing a decision tree and use the tree to detect failed
service(s) in a cloud platform in operation. Moreover, the failed services are detected without executing all the unit tests.

§ Construction of the decision tree

§ Execution of unit tests based on the decision tree

The tree of the Figure (right)
§ Execute unit test 3
§ If it fails, unit test 2 is executed

§ The failure of unit test 2 indicates
that service 1 is in a failed state

In some cases, there might be more than
one possible service in a failed state
§ If unit test 2 passes, then either service

2 or service 5 or both are in a failed
state

A failed service(s) can be detected by running log(n) number of unit tests instead of n, the total
number of unit tests after eliminating the isomorphic unit tests. Hence, the tree enables the
users to detect the failed service(s) automatically without executing all the unit tests.

27

Results
We evaluated the approach with OpenStack = 1391 unit
tests

Phase 1. Reduce the number of unit tests to 538 with
100% coverage

Phase 2. Established relationships between the reduced
set of unit tests and the OpenStack services. There were
20 services. Eliminated isomorphic unit tests. At the end of
Phase 2, we were able to reduce the number of unit tests
to 25.

Phase 3. Build decision tree using the relationships
established. 5 unit tests on average.

1391

538

25

5

28

Open Positions and CFP

l FTE, PostDoc, PhD
Students

p Fault injection, fault models,
fault libraries, fault plans,
brake and rebuild systems all
day long, …

p Cloud Operations and
Analytics for High Availability

p AI, machine learning, data
mining, and time-series
analysis for Cloud operations

Copyright©2015 Huawei Technologies Co., Ltd. All Rights Reserved.
The information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating results, future product
portfolio, new technology, etc. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in the predictive
statements. Therefore, such information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Huawei may change the information at any time
without notice.

HUAWEI ENTERPRISE ICT SOLUTIONS A BETTER WAY

