
Formal modelling of resilient
systems

Elena Troubitsyna
Åbo Akademi University,

Turku, Finland

Motivation
Dependability of a computing system is the ability to deliver a service

that can be justifiably trusted.

Dependability attributes:
 Availability, reliability, safety, security, integrity, maintainability

• Main threat to dependability is complexity

• Rich experience in modelling dependable systems from various domains

in the FP7 EU Rodin and Deploy projects (8 years of experience)

• Contribution towards creating dependability-explicit development process

• Resilience is a further development of the

dependability concept

• Resilience - the ability of a system to persistently
deliver trustworthy services despite changes

• It encompasses the system aptitude to autonomously
adapt to evolving requirements, operating
environment changes and/or component failures

Motivation (cnt)

Structure
• Why formal engineering?
• Introduction into Event-B specification

– Modelling and verifying safety
• Systems approach
• Refinement in Event-B

– Fault tolerant control systems
• From models to safety cases
• Modelling in large

– Layered architectures
– Mode-rich systems

• Fault tolerant service-oriented systems
• Probabilistic extension
• Discussion

• How to demonstrate resilience?

Demonstrating resilience: traditional
vs software engineering

• Build mathematical models of the design, its environment and
requirements

• Use calculations to establish that the design in the context of
the environment satisfies the requirements

• Modelling is validated by limited testing (because of
continuous behaviour)

• It is product-based assurance

Demonstrating resilience: traditional
vs software engineering

• According to probability theory demonstrating failure
rate 10-n /t requires 10n tests
– (Rushby: showing failure rate 10-9 requires 114000 years of

testing)

• Even operational statistic is insufficient (for system

working since 1993 without failures due to software,
we can demonstrate probability of failure lower than
10-6/h)

 Demonstrating resilience: traditional
vs software engineering

• Mostly done by controlling, monitoring, and
documenting the process used to create SW

• Process-based assurance (i.e., no direct evidence
about the product)

• Why: infeasibility of exhaustive testing
• Incomplete testing cannot be extrapolated (because

of discrete behaviour)

Formal modelling: why

From J.Rushby talk on “Disappearing formal methods”

Demonstrating resilience: trends

• Trend 1: Emphasis on the development
process aiming at producing fault free
software

• Trend 2: System approach to demonstrate
resilience

Formal modelling: why?

• To clean up architecture, handle complexity,
facilitate verification

• To spot contradicting (and sometimes missing
requirements)

• To clearly describe system static and dynamic
properties

Historical note
• The B Method: invented in 1990-s by J.-R. Abrial to formally specify

and develop sequential systems correct by construction;

• 1990-s: The Action Systems formalism by R.Back and K.Sere;

• from 2000: Event-B -- extension of the B Method in the spirit of
Action Systems;

• from 2007: The Rodin Platform -- free industrial-strength tool
support for Event-B

• Wide use of Event-B in the railway domain

Event B
• Specialisation of the B-Method

• Event B has been successfully used in development of several

complex real-life applications

• It adopts top-down development paradigm based on
refinement

• Refinement process: we start form an abstract formal
specification and transform it into an implementable program
by a number of correctness-preserving steps

– It allows to structure complex requirements

– Small transformations simplify verification

– Verification by theorem proving does not lead to state explosion

Modelling in Event-B
• Overall system behaviour: a (potentially) infinite loop of system

events:

• The dynamic system behaviour is described in terms of guarded
commands (events):

 Stimulus response.

Modelling in Event-B
• Overall system behaviour: a (potentially) infinite loop of system

events:

• Model invariant defines a set of allowed (safe) states;
• Each event should preserve the invariant;

– We should verify this by proofs.

System Model in Event B

Machines see contexts

Machines contain the dynamic
structure of a discrete system
(variables, invariants, events)

Contexts contain the static
structure
(constants and axioms)

General form of event

WHEN guard THEN body END

Non-deterministic
update of variables

ANY local_var WHERE cond THEN body END

Input parameters

Conditions over input
parameters and guard

Predicate defining
when event is

enabled

Tiny example: a vending machine

P
COFFEE TEE

Tiny example: a vending machine

P
COFFEE TEE

Tiny example: a vending machine

P
COFFEE TEE

Tiny example: a vending machine

Tiny example: a vending machine

Model verification

• Proof-based semantics: consider all possible
executions at once;

• A model is converted into a number of proof
obligations;

• A proof obligation is a mathematical theorem;

• Every proof obligation must be proven correct.

Model verification

• Verify that
– Well-definedness conditions are satisfied
– Initialization establishes invariant
– Each event preserves invariant

• Verification is done by proofs

• Tool support – Rodin platform to generate and

dischard proof obligations

Invariant preservation

The Rodin platform -- tool support for
Event-B

• Automates incremental development by refinement;

• Supports strong interplay between modelling and proof;

• Reactive: analysis tools are automatically invoked in the
background whenever a change is made.

• The platform is extendable by plug-ins that
– extend the Event-B language and proving techniques;
– bridge the platform with various model-checkers, theorem

provers, animators, modelling notations (e.g., UML), etc.

Resilience explicit modelling: safety

• Safety is a property of a system to not
endanger human life or environment

• Safety requirements are represented either as
invariants or reflected in the event guards
(restrict when an event can be executed)

Example

Defining invariant

Modelling safety

Modelling safety

• Formal verification helps us to ensure that no
essential safety requirements are missed:
– Invariant contains definition of safety
– Failed proofs : strengthening guards of events

Refinement: informally

The notion of model refinement

Refinement in Event-B

• Defined separately for a context and a
machine;

• For a context component, it is called
extension;

• Context extension allows
– introducing new data structures (sets and

constants), as well as
– adding more constraints (axioms) for already

defined ones.

Refinement in Event-B (cnt.)
For a machine component, there are several possible kinds of

refinement:
• simple extension of an abstract model by new variables and

events (superposition refinement);

• constraining the behaviour of an abstract model
(refinement by reducing model non-determinism);

• replacing some abstract variables by their concrete
counterparts (data refinement);

• a mixture of those

Superposition refinement

• Adding new variables and events;

• Reading and updating new variables in old event
guards and actions;

• Interrelating new and old variables by new
invariants;

• Restriction: the old variables cannot be updated
in new events!

Refinement of non-determinism

• Focuses on the old (abstract) model events:
• Strengthening the guards;
• Providing several versions of the same event;
• Refining non-deterministic actions (assignments).

Data refinement

• Replacing some old variables by their concrete
counterparts;

• A part of concrete invariant, gluing invariant,
describes the logical relationships between
the old and new variables
– The gluing invariant is used in all proofs to show

the correctness of
• such a replacement.

Refinement proof obligations
• As an abstract model, a refined model should satisfy the

feasibility and invariant preservation properties;

• In addition, we should show that

– guards of the old events are strengthened (or remain the same);

– actions of the old events simulate those of the abstract ones –

each refined model transition (execution step) is allowed by the
abstract model;

– In all POs, the gluing invariant is used to relate the old and new
model states.

Systems approach
• System approach assumes that while developing SW we

have a picture of whole system in mind

• Software fault
– “Bug” -- bad implementation of good requirements
– Design fault -- good implementation of bad

requirements

• We cannot obtain “good” requirements if we do not
understand how the whole system works (and fails)

Systems Approach in Control System Modelling

Computer

Sensors

Actuators

Plant Environment
(Plant) evolves

Sensors "register"
the state of plant

Controller reads sensors and
calculates how to set actuators to
achieve the desired behaviour

Controller sets actuators

Systems Approach in Control System Modelling

Computer

Sensors

Actuators

Plant Environment
(Plant) evolves

Sensors "register"
the state of plant

Controller reads sensors and
calculates how to set actuators to
achieve the desired behaviour

Controller sets actuators

Traditional development :
focus on controller (SW)

Systems Approach in Control System Modelling

Computer

Sensors

Actuators

Plant Environment
(Plant) evolves

Sensors "register"
the state of plant

Controller reads sensors and
calculates how to set actuators to
achieve the desired behaviour

Controller sets actuators

Systems approach:
model entire system and
derive controlling SW by
refinement and decomposition

Traditional development :
focus on controller (SW)

Modelling resilience: fault tolerance

• Fault tolerance is an ability of system to
exhibit predictable behaviour in presence of
faults
– Fault masking
– Error recovery

• Systems approach is essential: allows us to
model failure occurrence and error detection

• Relies on the model of environment

Fault tolerant explicit modelling
of control system

• Our specification of control system includes both a plant and a
controller

• The overall behaviour of the system is an alternation between the
events modelling plant evolution and controller reaction

PLANT

Controller

Error
detection

Shut Down

or

Routine
control

Predic-
tion

MACHINE
 ControlSystem
INVARIANT
 safety invariant and types of variables
OPERATIONS
Plant = WHEN flag=pl THEN evolution of plant

Detection = WHEN flag=det THEN fail : : Bool

 Abort = WHEN flag= contr & (not safe or fail=TRUE)
 THEN shut_down

 Control = WHEN flag= contr & safe & fail=FALSE
 THEN control_action

Prediction = WHEN flag = pred THEN prediction

Example: abstract specification of heater
controller

INVARIANT
…(fail=FALSE & flag/=DET & flag/=CONT => temp<=t_crit)
OPERATIONS
plant = WHEN flag = PL THEN temp :: NAT1 || flag := DET

detection = WHEN flag = DET THEN flag := CONT || fail :: BOOL

abort_op =
WHEN flag = CONT & (fail = TRUE or temp > t_crit) THEN abort

switch1 =
 WHEN flag = CONT & fail= FALSE & temp <= t_crit & temp < t_low
 THEN heat := ON…

prediction = WHEN flag = PRED THEN flag := PL END

Refinement of error detection

 The basic mechanism:
• Simulate dynamics of fault-free and faulty plant in the plant operation
• Use dynamics of fault-free plant to calculate expected states
• Mismatch between the expected and observed states signals about error

occurrence
 Corresponding refinement:
• Plant: mathematical functions to model fault free dynamics and non-

deterministic “deviations” from these functions to model random error
occurrence

• Prediction: assignment to variables modelling expected values using
functions modelling fault-free dynamics

• Detection: assignment to fail the result of matching obtained input values
and expected ones

Refined plant of the heater

WHEN (heat = ON & heater_fail_sim = OK) or heater_fail_sim=ON_STUCK

 THEN
 temp :: min_incr(temp)..max_incr(temp)
…

WHEN (heat = ON & heater_fail_sim = Failed)

THEN temp :: {xx | xx:NAT1 & (xx<next_temp_min or
 xx>next_temp_max)}

If heater is on and OK or it stuck at On then use math. functions
min_incr and max_incr to calculate interval of sensed temperature

If heater is OK but sensor failed then sensed temperature
is outside of valid interval

Refinement of error detection via data
refinement

• We replace variable fail modelling error
occurrence by variables representing failures
of system components

• In our example its either sensor or switch
failures

sensor_fail : BOOL & heater_fail : H_FAIL

(fail=TRUE) <=> (sensor_fail=TRUE or heater_fail /= OK)

Refinement of error detection via data
refinement (cont.)

Refinement of error detection mechanism
• Prediction: include calculations of expected states by

using mathematical functions modelling fault free
behaviour

 Prediction1 =
 WHEN flag = PRED & heat = ON THEN
 next_temp_max,next_temp_min :=max_incr(temp),min_incr(temp)
 Prediction2 =
WHEN flag = PRED & heat = OFF THEN
 next_temp_max,next_temp_min := min_decr(temp),max_decr(temp)

Failure Modes and Effect Analysis

FMEA is a well-known inductive safety analysis technique

For each system component it defines its possible failure modes, local and system
effect of component failures, as well as detection and recovery procedures.

FMEA table fields

Component – name of a component
Failure mode – possible failure modes
Possible cause – possible cause of a failure
Local effects – caused changes in the component behaviour
System effect – caused changes in the system behaviour
Detection – determination of the failure
Remedial action – actions to tolerate the failure

54

Example of FMEA

55

Comp. Sensor
Failure
 mode

Sensor reading exceeds expected range

Possible
 cause

Physical failure

Local
effects

Sensor reading is out of expected
boundaries

System
effects

Potentially unsafe behaviour

Detection Comparison of the value received
with the expected

Remedial
action

Retry three times. If failure persists then
switch to redundant sensor, diagnose
switch failure. If failure still persists, shut
down and raise the alarm.

From FMEA to formal specification

56

Detection

Detection_Sen1

Detection_Sen2

Detection_Switch

Checking conditions of detecting Failure Mode1
and changing FM1detected flag

Checking conditions of detecting Failure Mode2
and changing FM2 detected flag

...

Patterns application plug-in (Ilya
Lopatkin, Newcaslte Univ)

57

Refined specification: general form

VARIABLES
 state_variables of ControlSystem
 new variables for modelling failures of components
 variables modelling expected states

INVARIANT
 constraints of variables & data refinement relation
 …
EVENTS
 Plant =
 WHEN flag=pl
 THEN simulation of evolution of the plant based on the corresponding physical laws

and non-deterministic occurrence of failures
 END;

Refined specification : general form
(cont.)

Detection =
 WHEN flag=det and real state does not match expected state
 THEN failures of components are detected … END;

Abort =
 WHEN flag= contr & (not_refined_safe \/ components failed) THEN abort END;

Control =
WHEN flag= contr & refined_safe & components are fault-free
 THEN controlling_action … END;

Prediction =
 WHEN flag = pred
 THEN calculate next expected state using
 the same physical laws as for simulating the plant …END

Introducing redundancy by refinement

• In systems without redundancy we can detect errors
but cannot identify their causes

• Hence all errors have the same (high) criticality
• To distinguish between errors we need to employ

redundancy
• It will allow us to split the set of faulty system states

into the subset of faulty but safe (and hence
operational) states and the subset of faulty and
unsafe states.

General specification of system with
redundancy

VARIABLES
state_variables of ControlSystem
new variables for modelling redundancy
variables modelling expected states

EVENTS
 Plant =
 WHEN flag=pl
 THEN simulation of the behaviour of the plant with
 redundant components and the occurrence of component’s

failures; … END;

General specification of system with
redundancy (cont.)

Detection 1=
WHEN flag=det and mismatch between the states of

redundant components is detected & the error cannot be
masked

 THEN critical failure of redundant components is detected
 END
Detection 2
 WHEN the real state does not match the expected state
 THEN critical failure of other components is detected
 END;
...

General specification of system with
redundancy (cont.)

Abort =
WHEN flag= contr & (not refined_safe \/ components failed)
THEN abort END;

Control =
WHEN flag= contr & refined_safe &
 components are fault free or failures are masked
THEN controlling_action; …END;

Prediction … is not affected by this refinement

Observe, that although the guard of abort did not change, it becomes enabled
less often. (Because not-critical failures are now masked)

Specifying redundant sensors

INVARIANT
 …sen1 : NAT1 & sen2 : NAT1 & sen3 : NAT1 &

(temp=sen1 or temp=sen2 or temp=sen3) &

(sen1=sen2 => temp=sen1) &
(sen2=sen3 => temp=sen2) &
(sen3=sen1 => temp=sen3) & …

Temperature at the previous refinement step coincides with at least one
sensor reading at the current refinement step

If at least two sensors produce identical readings, majority view is taken.
Temperature at the previous refinement step coincides with majority view

Error detection via voting

detection =
 WHEN flag = DET
 THEN

WHEN sen1 = sen2 THEN temp1,sensor_fail := sen1,FALSE END
WHEN sen2 = sen3 THEN temp1,sensor_fail := sen2,FALSE END
WHEN sen3 = sen1 THEN temp1,sensor_fail := sen3,FALSE END

WHEN sen1 /= sen2 and sen2/= sen3 and sen1 /= sen3

THEN temp1 :: {sen1,sen2,sen3}; sensor_fail := TRUE END;

If majority can be established then take majority view as current temperature
and consider sensors to be fault free

If majority CANNOT be established then current temperature coincides with
nondeterministically chosen sensors, sensors failure is detected

Outline of the approach

1. Abstract specification of entire system: the initial
specification captures requirements for routine
control, models failure occurrence and defines
safety property as a part of its invariant

2. Specification with refined error detection

mechanism: the abstract specification is augmented
with the representation of failures of the
components, more elaborated description of
plant’s dynamics and detailed description of error
detection.

Outline of the approach

3. Specification of the system supplemented with
redundancy: the specification is refined to describe
behaviour of redundant components and control
over them. The error detection mechanism is
enhanced to distinguish between criticality of
failures.

4. Decomposition: the specification of overall system is
split into specifications of the controller and the
plant.

5. Implementation: executable code of controller is
produced.

Formal modelling and certification of
safety-critical systems

• IEC 61508: four safety integrity levels (SILs)
– SIL 3 requires formal modelling
– SIL 4 requires formal verification

• Safety Case – a documented body of evidence

that provides a convincing and valid argument
that a system is adequately safe for a given
application in a given environment.
– Goal -> Strategy -> Argument

Example of a Safety Case

©Y. Prokhorova Distributed
Systems Laboratory Seminar, November 8,

2012
69

System is acceptably
safe to operate

Argument over all
hazards

Hazard1
mitigated

Hazard2
mitigated

Evidence
about H1

Hazard list
C1 S1

G1

G2 G3

Sn1

 What can be used as an evidence?
– PHA, FTA, etc.
– Checks done by a reviewer

(an expert)
– Tests
– Model checking results
– Proofs

Formal proofs as the evidence for safety cases
are reasonable if those proofs are
demonstrated to support incorporated safety
requirements

Linking Event-B and Safety Cases
Goals
• Usually goals correspond to safety requirements

– All target requirements should be represented in the model

Argument
• Technique showing how the goal is achieved

– Each requirement should be verified

We propose
• Taxonomy of requirements
• Define how they should be reflected in the model
• Define verification means

Modelling in Large

• Event-B is a language for system-level
modelling

• We can start with an abstract model at
architectural level, refine it, decompose and
formally develop lower level components

• Modelling functional behavious and fault
tolerance at different abstraction levels

Architectural modellling

• Fault tolerant control systems with layered
architecture

• Mode-rich systems

Deriving architecture by refinement: pharmaceutical
robot

• Joint work with Perkin
Elmer Life Science company
(Finland)

• EU FP5 MATISSE project --
Methods and tools for
industrial strength system
engineering (2000-2003)

• Goal: ensure safety and
reliability of a
pharmaceutical robot

Control systems with layered
architecture

Service

Operation 1 Operation 2 Operation N

Op1.1 Op1.2 Op1.M ... OpN.1 OpN.K

• The lowest layer: embedded subsystems that directly communicate with
sensors and actuators

• The intermediate layers: components that encapsulate the lowest layers
and provide interface to them

• The highest layer: a component server

Control systems with layered
architecture

Service

Operation 1 Operation 2 Operation N

Op1.1 Op1.2 Op1.M ... OpN.1 OpN.K

Request to execute service

Request to execute Operation 1

Request to execute Op1.1 acknowlegement

Signals about
successful

termination

Next
operation

can be
requested

Exceptions in a layered architecture

Request to execute service

Request to execute
 Operation 1

Request to
execute Op1.1

excep-
tion

Request to
execute OpR1.1

acknow
legement

normal control automatic error recovery normal

Exception signals about error occurrence

Error is manifestation of fault in a system component

Error recovery is an attempt to restore fault-free system state or at least to
preclude system failure

Attempt of
error

recovery

Success
of error
recovery

Exceptions in a layered architecture

Request to
execute service

Request to execute
 Operation 1

Request to
execute Op1.1

excep-
tion

Request to
execute OpR1

exception

normal control automatic error recovery manual
error
recovery

Request to
execute OpR1.1

exception

exception

Exception cannot be
handled on this

layer: propagate it
further up

Exception can be
handled from this layer

Attempt of error
recovery

Error
recovery

failed

Operator’s request to
execute service for

error recovery

Exceptions
• For each component (except the lowest level

subsystems) we can identify two classes of
exceptions:

• 1. generated exceptions: the exceptions raised
by the component itself upon detection of an
error,

• 2. propagated exceptions: the exceptions raised
at the lower layer but propagated to the
component for handling.

Propagated exceptions
We classify them as
• an acknowledgement of normal

termination, or
• a signal indicating recoverable error

occurrence, or
• a signal indicating unrecoverable error

occurrence.

Component’s behaviour

Start

valid
parameters

Executing

lower layer
command
executed

Handling Recovering

lower layer
command
executed

successful
termination
of lower layer
command

recoverable
propagated
exceptionbad

para-
meters
(raised
exception)

exception
was raised
or operation
was
completed unrecoverable

propagated
exception or
recovery failedStopping

Stopped

component stops, returning control to the higher layer

Specification pattern of fault tolerant
component

MACHINE
 FTComponent
VARIABLES flag, …
INVARIANT flag :

{Executing,Handling,Recovering,Stopping,Stopped}
…

EVENTS
Start activates the component
Execute= WHEN flag=Executing
 changes the current state; raises current layer

exceptions; imitates execution of the lower layer

Specification of fault tolerant component

Handle = WHEN flag=Handling
 evaluates lower layer exceptions. If they indicate

success, enables Execute. If they are recoverable,
enables Recover, otherwise Stop

Recover = WHENT flag=Recovering
 models error recovery (by the lower layer command);

passes control to Handle

Stop = WHEN flag=Stopping
 terminates execution of component (if the current layer

request is completed or the current layer exception is
raised)

Discussion of abstract specification
From development perspective:
• Models the upper layer – the rest of the layers

are “folded”
• Behaviour of the lower layer(s) is modelled by

non-deterministic raising of its exception(s)
From specification perspective:
• Defines a general pattern for abstractly

specifying a component at each layer

Refinement
• Each refinement step “unfolds” a lower layer
• The specification of the current layer is refined

to
– Add some implementation details, including activation

of the lower layer component(s) in Execute and
Recover operations

– Block the current layer while the lower layer is
executing a request

Refinement (cont.)

• The lower layer is specified according to

the proposed specification pattern

• Refinement process continues until we
reach the bottom layer

Discussion of the modelling approach

• A general formal specification pattern that can be
recursively applied to specify fault tolerance mechanisms
at each architectural layer

• Pattern can be iteratively applied via stepwise refinement
in Event-B

• The approach results in development of a layered fault
tolerant system correct by construction

Mode-rich systems

• Modes – mutually exclusive sets of system
behaviour (Leveson) -- are widely used in
industry

Motivation

TiredMode

ActiveAvarenessMode

SleepingMode

Desirable mode transition

Undesirable mode transition

Motivation

• Modes – mutually exclusive sets of system
behaviour (Leveson) -- are widely used in
industry

• Complex mode transition scheme:
– Long-running mode transitions of components
– Strong impact of component failures on mode

transition scheme

• Lack of generic archiectural-level approaches
faciliatating design and verification of mode-rich
systems

Layered mode-rich systems
Implements mode logic on

global system level

Layered mode-rich systems
Incapsulate detailed

behaviour of low level
components, local logic

Layered mode-rich systems
Control of physical

components

Attitude and Orbit Control System (AOCS):
Global mode logic

Standby Off Safe Nominal Preparation Science

• Off– the satellite is in this mode after system (re)-booting

• Standby mode is maintained until separation from the launcher is completed

• Safe – The satellite acquire stable attitude, which allows the coarse pointing
control

• Nominal -- The satellite is trying to reach the fine pointing control, which is
needed to use the payload instruments

• Preparation – The payload instrument is getting ready after fine pointing is
reached

• Science – the payload instrument is ready to perform its tasks. The mission goal is
to reach this mode and stay in it as long as needed

AOCS Components

• Four sensors
– Star tracker, Sun Sensor, Earth Sensor, Global

Positioning system

• Two actuators
– Reaction Wheel and Thruster

• Payload instrument producing mission
measurements

AOCS: Mode entrance conditions

Standby Off Safe Nominal Preparation Science

Fault occurrence and mode logic

Coarse
navigation Off

• While trying to reach a certain mode a component can fail and roll-back

• In some cases the entire system needs to roll-back

Fine
navigation

Critical fault Fault

Attitude and Orbit Control System (AOCS):
Global mode logic

Standby Off Safe Nominal Preparation Science

• Several component might fail at the same time or during roll-back

• Cascading effect

• State explosion problem, very large number of scenarious and hence
difficult to test

 We need an architectural-level rigorous
approach to designing mode-rich systems to
handle complexity and guarantee correctness

System structure and behavior

The system is cyclic.

System structure and behavior

At each cycle MM assesses SMM states by monitoring
their modes and detected errors and either

• Initiates a forward transition according to the predefined
scenario

• Initiatates backward transition (if error occurred). Target
mode depends on error severity

• Completes transition to the target mode and becomes stable
(if cond. for entering mode are satisfied and no error occur)

• Maintains the current mode (if neither cond. for entering new
mode are satisfied nor error occured)

Mode managing component:
behavioural pattern

Introducing component status:
• last_mode – last successfully

reached mode
• next_target – the target mode

that a compoent is currently in
transition to

• previous_target – the previos
mode that a component was
in transition too (though not
necessarily reached it)

Mode managing component:

• Stable state: decide to initiate a new mode
transition to some more advanced mode

• Transition state: monitor states of lower layer
components. If at some point mode entry
conditions are satisfied for the target mode then
complete transition and become stabe

• In both stable and transitional states: monitor
lower layer components for the detected error,
execute error recovery by setting new target
mode if errors are detected

Refinement and modularization

• Modularization: we model a component via its

interface and develop its implementation as
separate (formal) development without losing
correctness

Formal development strategy

• General idea: to define generic interface
of mode managing component

• Build the entire system in the top-down
fashion by instantiating generic
interface and unfolding one layer at the
time

• Proof desired properties of model logic
as part of refinement verification

Generic interface of mode-managing component

Refinement strategy

Proved properties of mode logic

• Unambiguity of mode logic:

 A component satisfies mode entry conditions
and mode invariant (when it is Stable)

Service-oriented systems

• Telecommunication systems:
– Distributed software-intensive systems
– Provide a large variety of services

Important to guarantee correctness of software and

system fault tolerance

The Lyra Design Method

• UML2-based service-oriented method for developing
communicating systems

• The system behaviour is modularised and organised
into layers according to external communication
interfaces

• Distributed network architecture is derived via
number of model transformations

Telelogic User Conference 2003 / Sari
Leppänen 110

Service

Service Specification

Subservice SC Subservice SC Subservice SC

Service Decomposition

Service Distribution

Service Implementation

Lyra Design Method

Telelogic User Conference 2003 / Sari
Leppänen 111

Service

Service Specification

Subservice SC Subservice SC Subservice SC

Service Decomposition

Service Distribution

Service Implementation

Lyra Design Method
Service specification: system-
level services and interfaces are
defined

Telelogic User Conference 2003 / Sari
Leppänen 112

Service

Service Specification

Subservice SC Subservice SC Subservice SC

Service Decomposition

Service Distribution

Service Implementation

Lyra Design Method
Service decomposition:the abstract
model is decomposed into a set of
service components and interfaces
between them

Telelogic User Conference 2003 / Sari
Leppänen 113

Service

Service Specification

Subservice SC Subservice SC Subservice SC

Service Decomposition

Service Distribution

Service Implementation

Lyra Design Method

Service distribution: the logical
architecture of services is distributed
over a given network

Telelogic User Conference 2003 / Sari
Leppänen 114

Service

Service Specification

Subservice SC Subservice SC Subservice SC

Service Decomposition

Service Distribution

Service Implementation

Lyra Design Method

Service implementation: low-level
implementation details are added
and platform specific code is
generated

Formal Development

• We single out a generic concept of a
communicating service component and propose
patterns for specifying and refining it

• In the refinement process a service component is
decomposed into service components of smaller
grannularity according to the same pattern

Modelling a Service Component in B

• Components are created according to pattern
ACC - Abstract Communicating Component

• ACC Component consists of
– a “kernel”, i.e., the provided functionality
– “communication wrapper”, i.e., the

communication channels via which data are
supplied to and consumed from the component

Behaviour of Abstract Communicating
Component

calculate

input output

inp_chan out_chan

Translating UML2 model
into the ACC pattern

MACHINE ACC
….
EVENTS
/* communicational */
 env_req
 read
 write
 env_resp

/* functional */
 calculate

END

Idle serving

env_req

env_resp

 aSC:SC

SC_PSAP

I_FromSCI_ToSC

Service Decomposition Phase

• External service providers are introduced

• The behaviour is decomposed accordingly

Service decomposition:
fault free execution flow

…

SS1 SS2 SS3 SSN-1 SN

S

Fault Tolerance

• Initial stage: not only successful but also failed
service provision

• Decomposition: each subservice can fail

Service decomposition: faults
in execution flow

…

SS1 SS2 SS3 SSN-1 SN

S

Error recovery by
retrying execution of
failed subservice

Service decomposition: faults in execution
flow

…

SS1 SS2 SS3 SSN-1 SN

S

Error recovery by
rollback

Service decomposition: faults
in execution flow

…

SS1 SS2 SS3 SSN-1 SN

S

Service
failure

Success

Unrecoverable error:
Abort service execution

Convergence of error recovery?

…

SS1 SS2 SS3 SSN-1 SN

S

Error recovery by
retrying: infinite retry

Convergence of error recovery?

…

SS1 SS2 SS3 SSN-1 SN

S

Error recovery by
rollback: domino effect

Convergence of error recovery

• How to bound error recovery?

• We introduce Maximal Service Response Time
(Max_SRT)

• If the service fails to complete computation
within Max_SRT then it aborts and returns
failure response

Abort of service due to timeout

…

SS1 SS2 SS3 SSN-1 SN

S

Execution_time >Max_SRT

Service Decomposition Phase

• In B model: decomposition is represented as refinement

of the initial abstract pattern ACC

• B refinement step focuses on the ”functional” part of the
specification

• We introduce the operation Service_Director and Time

• Service_Director orchistrates execution flow

• Time non-deterministically decrements the execution time
left

Service Distribution Phase
• This phase describes how service components are distributed

over a given network

• Service Distribution phase of Lyra corresponds to one or
several B refinements

• Refinement steps introduce separate B components modelling
external service components

• All new B components are specified according to the same
(ACC) pattern

Probabilistic extension
• Goal: to integrate quantitative reasoning about

dependability in Event-B refinement

• Extending the language and semantics of Event-B to enable
dependability analysis using the theory of Markov
processes

• Qualitative probabilistic choice x |⊕ P(v; x0)
– Assigns x a new value x0 with some fixed (but unknown)

probability
– allows the reasoning about the fairness
– can be placed only instead of an existing nondeterministic

assignment (S. Hallerstede and T. S. Hoang. 2007)

Explicit probabilistic assignment

• Quantitative probabilistic assignment – discrete
time

 x |⊕ x1 @P1; ...; xm @Pm;

– assigns to x a new value xi with some fixed and known
non-zero probability pi

– defines a next-state distribution for any state in which
event is enable

– always refines its corresponding nondeterministic
counterpart

Explicit probabilistic assignment
• Quantitative probabilistic assignment – continuous

time
 x |⊕ x1 @λ1; ...; xm @λm;
 here λ1 rate

– With probabilities: Markov decision process (MDP) or a

discrete-time Markov chain (DTMC)
– With rates : a continuous-time Markov chain (CTMC)

• Probabilistic model checking can be used to verify

the non-functional properties (quality attributes) of
systems modelled in Event-B

Dependability-explicit probabilistic
modelling

• Modelling faulty behaviour

• In the abstract model
result := result’. result’: {OK_result, failure}

• In the probabilistic model
result |⊕ OK_result @P ;failure @1-P

Assessing safety
• Initially, a desired safety

property is defined using
abstract system variables

• We unfold it in the refinement
until it refers to the basic
system components

• At each refinement step we
formulate gluing safety
invariants that relate the
newly introduced variables
and abstract variables present
in the safety property

At the final specification we have
probabilistic model of the behaviour of
each component and hence can calculate
the probability of breaching safety

Essentially, we build a fault tree and
demonstrate that the probability of a
hazard occurrence is acceptably low

Modelling and assessing fault tolerant
reconfigurable systems

• Subsystem 1 works until some component fails in it. Then the system
switches to Subsystem2.

• Subsystem 2 works also until some component fails in it. But what when?
• Either need the 3rd subsystem or construct a system from “left-overs”

Modelling and assessing fault tolerant
reconfigurable systems

• Reliability vs performance: are the target objectives reached?
• Integration with probabilistic analysis

Allows us to assessed the derived reconfigurable system architecture and
quantitatively verify that it achieves the desired reliability and performance
objectives.

Service-oriented development:
quantitative verification of QoS attributes

• What is the probability that at least one service execution will
be aborted during a certain time interval?

• What is the probability that a number of aborted services
during a certain time interval will not exceed some threshold?

• What is the mean number of served requests during a certain
time interval?

• What is the mean number of aborted requests during a
certain time interval?

• What is the mean number of failures of some particular
subservice during a certain time interval?

Discussion

• Rich experience in modelling resilient systems from the
transportation, aerospace and business information
system domains

• Resilience-explicit modelling: two-fold approach
– Creating modelling patterns and guidelines for

representing and verifying certain dependability-related
behaviour

– Integrating (external) techniques for safety and reliability

analysis into the formal development process of Event-B

140

FMEA worksheet fields

Failure mode – possible failure modes

Possible cause – possible cause of a failure

Local effects – caused changes in the component behaviour

System effect – caused changes in the system behaviour

Detection – determination of the failure

Remedial action – actions to tolerate the failure

Component – name of a component

141

Proposed FMEA worksheet fields

Failure mode – possible failure modes (unit failure)

Possible cause – possible cause of a failure

Local effects – caused changes in the component behaviour

System effect – caused changes in the system behaviour

Detection – determination of the failure

Remedial action – actions to tolerate the failure

Global mode – name of a global mode

The general rule of the rollback

• Mode Manager (MM) puts the system to the previous,
however as advanced as possible, global mode where
the failed unit is in Off state.

• All units that should be operational in the chosen
degraded mode should be faul free
– Otherwise, MM should put the system to a global mode

where all failed units are in Off states.

NODES, Copenhagen, June 28th, 2011 142

NODES, Copenhagen, June 28th, 2011 143

FMEA worksheet for mode Nominal

Global mode Nominal
Failure mode GPS failure
Possible cause Primary hardware failure
Local effects Loss of precision of GPS
System effects Switch to a degraded mode
Detection Comparison of received data with the predicted one
Remedial action If a failure occurs for the first time, then switch the nominal branch of

the unit to the mode Off and the redundant branch of the unit to the
mode Coarse. During the reconfiguration between the unit branches
maintain the current global mode Nominal. If the redundant branch
fails, then switch the branch to the mode Off and put the system to the
previous, the most advanced, global mode where GPS unit is in Off
state, i.e., to the mode Safe.

Keep the unit status equals to Locked only if one of two branches is in
Coarse state and there is no ongoing reconfiguration. Otherwise, change
the unit status to Unlocked.

The results of integrating FMEA into
the requirements engineering

• Allows for a systematic derivation of fault
tolerance part of mode logic.

• Facilitates formalisation of the required
conditions of mode consistency

Resilience in the context of service-
oriented systems

• Service-oriented computing enables rapid building of
complex sofware by assembling readily-available services

• Formalisation of Lyra development approach (by Nokia) in
Event-B: correctness and agility + fault tolerance and

• Are fault tolernace mechanisms appropriate, i.e., allow us
to meet the desired quality of service (QoS) attributes?

• Need for techniques enabling evaluation of QoS
attributes at early design stages

Proposed approach

• Build model of dynamic service architecture in Event-B

• Formalise and verify dynamic service behaviour

• Augment Event-B model with stochastic information
about rates and durations of the orchestrated services

• Use probabilistic model checking to verify the desired
QoS attributes of the resultant Continuous-Time
Markov Chain (CTMC)

Service-Oriented Systems (SOS)
• Services are built by aggregating of lower-layer

subservices
• Coordination is performed by a service-director

 Service-director

Service Request Response/Failure

Subservice 1 SubService2 SubServiceN

SS1.1 SS1.2

Activate Monitor Activate
Monitor

SS1.3 SS2.1 SS2.2 SSN.1 SSN.2

Flow of control

• Services are handled one by one
• After each subservice execution the service director might

– allow the subservice to continue
– proceed to the next subservice
– retry subservice execution
– abort (the entire service)

IN SD SD SD S1 S2 SD OUT SN

IN SD S1 SD S2 SD SN SD OUT

Event-B model as transition system
• Let Σ be a state space and, ℰ a set of events, I invariant

• Event is defined as
 e = when Ge then Re end
 can be seen as syntactic sugaring for

 e(σ, σ’) = Ge(σ) ⋀ Re(σ, σ’)

• To define Event-B model as a transition system, we define

functions before(e) and after(e):

Event-B model as transition system (cnt.)

• The behaviour of any Event-B machine is defined
by a transition relation –>

 where is a subset of
events enabled in σ

Formalising dynamic properties
• By defining Event-B specification we can formally

define a number of essential dynamic properties
of SoS under construction

• Formalisation of requirements can be added as a
collection of model theorems

• If mapping between model events and “skeleton”
is defined then the process can be automated

• Proving: either within Rodin platform or using
external theorem provers

Probabilistic Event-B

• Transforming dynamic service architecture
into a Continuous Time Markov Chain

• We aim at verifying time-bounded reachability
and reward properties related to a possible
abort of service execution

• Properties are specified as Continuous
Stochastic Logic (CSL) formulae

Model transformation
• All events are augmented with the information about

probability and duration of all the actions

• For the state σ ∈ Σ and event e ∈ ℰ where σ ∈ before(e)
assume that Re can transform σ to a set of states {σ1’, ..., σm’ }

• We augment every such transformation with a constant

transition rate
 λi ∈ R+,
• The sojourn time in state σ is exponentially distributed with

parameter Σλi

• Hereby we replace a nondeterministic choice between the
possible successor states by the probabilistic choice
associated with the exponential race conditions

Event-B model as a probabilistic transition
system

• The behaviour of a probabilistically augmented
Event-B machine is defined by a transition
relation

 where

Quantitative verification of QoS
attributes with PRISM

• What is the probability that at least one service execution will
be aborted during a certain time interval?

• What is the probability that a number of aborted services
during a certain time interval will not exceed some threshold?

• What is the mean number of served requests during a certain
time interval?

• What is the mean number of aborted requests during a
certain time interval?

• What is the mean number of failures of some particular
subservice during a certain time interval?

• Rich experience in modelling resilient systems from the
transportation, aerospace and business information
system domains

• Two types of approaches:
– Focusing on creating modelling patterns and guidelines for

representing and verifying certain resilience-related
behavior

– Integrating (external) techniques for safety and reliability

analysis into the formal development process of Event-B

Discussion

• Scalability in formal modelling
• Powerful automatic tool support

• Event-B and Rodin platform:

 event-b.org

• Deploy project:
 http://www.deploy-project.eu/

Challenges

Thank you!

	Formal modelling of resilient systems
	Motivation
	Motivation (cnt)
	Structure
	Slide Number 5
	Demonstrating resilience: traditional vs software engineering
	Demonstrating resilience: traditional vs software engineering
	 Demonstrating resilience: traditional vs software engineering
	Formal modelling: why
	Demonstrating resilience: trends
	Formal modelling: why?
	Historical note
	Event B
	Modelling in Event-B
	Modelling in Event-B
	System Model in Event B
	General form of event
	Tiny example: a vending machine
	Tiny example: a vending machine
	Tiny example: a vending machine
	Tiny example: a vending machine
	Tiny example: a vending machine
	Model verification
	Model verification
	Invariant preservation
	The Rodin platform -- tool support for Event-B
	Resilience explicit modelling: safety
	Example
	Defining invariant
	Modelling safety
	Slide Number 31
	Slide Number 32
	Modelling safety
	Refinement: informally
	The notion of model refinement �
	Refinement in Event-B
	Refinement in Event-B (cnt.)
	Superposition refinement
	Refinement of non-determinism
	Data refinement
	Refinement proof obligations
	Systems approach
	Systems Approach in Control System Modelling
	Systems Approach in Control System Modelling
	Systems Approach in Control System Modelling
	Modelling resilience: fault tolerance
	Fault tolerant explicit modelling of control system
	Slide Number 48
	Example: abstract specification of heater controller
	Refinement of error detection
	Refined plant of the heater
	Refinement of error detection via data refinement
	Refinement of error detection via data refinement (cont.)
	Failure Modes and Effect Analysis
	Example of FMEA
	From FMEA to formal specification
	Patterns application plug-in (Ilya Lopatkin, Newcaslte Univ)
	Refined specification: general form
	Refined specification : general form (cont.)
	Introducing redundancy by refinement
	General specification of system with redundancy
	General specification of system with redundancy (cont.)
	General specification of system with redundancy (cont.)
	Specifying redundant sensors
	Error detection via voting
	Outline of the approach
	Outline of the approach
	Formal modelling and certification of safety-critical systems
	Example of a Safety Case
	Linking Event-B and Safety Cases
	Modelling in Large
	Architectural modellling
	Deriving architecture by refinement: pharmaceutical robot
	Control systems with layered architecture
	Control systems with layered architecture
	Exceptions in a layered architecture
	Exceptions in a layered architecture
	Exceptions
	Propagated exceptions
	Component’s behaviour
	Specification pattern of fault tolerant component
	Specification of fault tolerant component
	Discussion of abstract specification
	Refinement
	Refinement (cont.)
	Discussion of the modelling approach
	Mode-rich systems
	Motivation
	Motivation
	Layered mode-rich systems
	Layered mode-rich systems
	Layered mode-rich systems
	Attitude and Orbit Control System (AOCS): Global mode logic
	AOCS Components
	AOCS: Mode entrance conditions
	Fault occurrence and mode logic
	Attitude and Orbit Control System (AOCS): Global mode logic
	Slide Number 98
	System structure and behavior
	System structure and behavior
	Mode managing component: behavioural pattern
	Mode managing component:
	Refinement and modularization
	Formal development strategy
	Generic interface of mode-managing component
	Refinement strategy
	Proved properties of mode logic
	Service-oriented systems
	The Lyra Design Method
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Formal Development
	Modelling a Service Component in B
	Behaviour of Abstract Communicating Component
	Translating UML2 model �into the ACC pattern
	Service Decomposition Phase
	Service decomposition: �fault free execution flow
	Fault Tolerance
	Service decomposition: faults �in execution flow
	Service decomposition: faults in execution flow
	Service decomposition: faults �in execution flow
	Convergence of error recovery?
	Convergence of error recovery?
	Convergence of error recovery
	Abort of service due to timeout
	Service Decomposition Phase
	Service Distribution Phase
	Probabilistic extension
	Explicit probabilistic assignment
	Explicit probabilistic assignment
	Dependability-explicit probabilistic modelling
	Assessing safety
	Modelling and assessing fault tolerant reconfigurable systems
	Modelling and assessing fault tolerant reconfigurable systems
	Service-oriented development: quantitative verification of QoS attributes
	Discussion
	FMEA worksheet fields
	Proposed FMEA worksheet fields
	The general rule of the rollback
	FMEA worksheet for mode Nominal
	The results of integrating FMEA into the requirements engineering
	Resilience in the context of service-oriented systems
	Proposed approach
	Service-Oriented Systems (SOS)
	Flow of control
	Event-B model as transition system
	Event-B model as transition system (cnt.)
	Formalising dynamic properties
	Probabilistic Event-B
	Model transformation
	Event-B model as a probabilistic transition system
	Quantitative verification of QoS attributes with PRISM
	Discussion
	Challenges
	Slide Number 158

