
	
	
	

Assurances	 for	 Self-‐Adap1ve	 Systems	
	

SERENE	 Autumn	 School	
October	 2,	 2013	 Kiev	

	
	

Danny	 Weyns,	 Linnaeus	 University	 Sweden	
danny.weyns@lnu.se	 	

h8p://homepage.lnu.se/staff/daweaa/index.htm	 	

Your	 tutor	 this	 aBernoon	

2	

	
Linnaeus	 University	 Växjö	 campus	 –	 Sweden	 	
Research	 team	 focusing	 on	 soBware	 architecture	 and	 self-‐adapMve	 systems	

Växjö, Sweden - Google Maps https://maps.google.com/maps?f=d&source=s_d&saddr=Växjö...

1 of 1 10/2/13 12:30 PM

MoMvaMon	

3	

	
• Engineering	 contemporary	 soBware	 systems	 is	
complex	 due	 to	 uncertainMes	 at	 design	 Mme	 	
•  Changing	 availability	 	 of	 resources	 	
•  Faults	 that	 are	 difficult	 to	 predict	 	
•  Changing	 or	 new	 user	 goals	

• How	 to	 engineer	 such	 systems	 and	 guarantee	
system	 goals	 regarding	 of	 the	 uncertainMes?	 	 	

	

Promise	 of	 self-‐adapMve	 systems*	
	
	
Self-‐adapMve	 systems	 are	 able	 to	 adjust	 their	 behavior	 in	
response	 to	 their	 percepMon	 of	 the	 environment	 and	 the	
system	 itself	
	
to	 become	 more	 resilient,	 dependable,	 robust,	 energy-‐
efficient	 […]	
	
	
*B.	 Cheng	 et	 al.,	 SoBware	 Engineering	 for	 Self-‐AdapMve	 Systems:	 A	 Research	 Roadmap,	 Lecture	 Notes	 in	
Computer	 Science,	 vol.	 5525,	 2009	 	 	 	 	 	 	 	 	 	 	 	

Promise	 of	 formal	 approaches	 for	
self-‐adapMve	 systems*	

	
	
Formal	 methods	 offer	 a	 means	 to	 	
provide	 evidence	 that	 the	 system	 requirements	 are	
saMsfied	 during	 operaMon	
regarding	 the	 uncertainty	 of	 changes	 that	 may	 affect	 the	
system,	 its	 environment	 or	 its	 goals	
	
	
*SoBware	 Engineering	 for	 Self-‐AdapMve	 Systems:	 Assurances	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 www.dagstuhl.de/de/programm/kalender/semhp/?semnr=13511	 	

	

Goals	 of	 this	 tutorial	

•  Understand	 the	 noMon	 of	 self-‐adaptaMon	 	
•  Get	 familiar	 with	 references	 approaches	 for	
architecture-‐based	 self-‐adaptaMon	

•  Get	 familiar	 with	 state	 of	 the	 art	 in	 formal	
methods	 for	 self-‐adapMve	 systems	 	

•  Understand	 the	 challenges	 in	 formal	 methods	
at	 runMme	 for	 self-‐adapMve	 systems	

Overview	

•  Architecture-‐based	 self-‐adaptaMon	 vs.	 control-‐
based	 self-‐adaptaMon	

•  Reference	 approaches	 for	 architecture-‐based	
self-‐adaptaMon	

•  Formal	 methods	 for	 self-‐adapMve	 systems	
•  AcMve	 formal	 methods	 for	 self-‐adaptaMon	
•  Wrap	 up	 	

Self-‐adaptaMon	
	
Architecture-‐based	 self-‐adaptaMon	
	
	
	

Control-‐based	 self-‐adaptaMon	
	

Target	 system	 Controller	

disturbance	 input	

reference	
input	 output	

Transducer	

Managed	 system	

Environment	

Managing	 system	

effect	

adapt	
monitor	

control	

Basic	 model	 control-‐based	 self-‐
adaptaMon	

9	

Target	 system	 Controller	

transduced	 output	

disturbance	 input	

reference	 input	 measured	 output	

Transducer	

control	 input	

	
Discrete)me	 dynamic	 system	 	
	 	 	 x(k+1)	 =	 f(x(k),u(k),dx(k))	
	 	 	 	 	 	 	 x:	 state;	 u:	 input;	 dx:	 state	 disturbances	 	 	
	 	 	 y(k)	 =	 g(x(k),u(k),dy(k))	 	
	 	 	 	 	 	 	 y:	 output;	 u:	 input;	 dy:	 output	 disturbances	

Control-‐based	 	 	 	
self-‐adaptaMon	

10	

Classic controllers
(Abdelzaher et al. 2003)	

Decentralized	 control	 	
(X.	 Wang	 et	 al.,	 2007;	 R.	 Wang	 et	 al	 2012)	

Nested	 and	 layered	 architectures	
(Zhu	 et	 al,	 2006;	 Kusic	 et	 al.	 2009)	

CPU capacity) allocated to a class [16] or the fraction of net-
work link bandwidth allocated to a flow [17].

This section discussed the natural existence of actuators
in computing systems, which makes it possible to imple-
ment the “valves” that appear in Figure 1(b). Another impor-
tant cornerstone of applying feedback control to computing
systems is the existence of a natural translation from com-
mon QoS assurance problems into those of feedback con-
trol. This topic is covered in the next section.

QoS Mapping
A cornerstone of a control-theoretic paradigm for QoS guar-
antees in software systems lies in the ability to convert com-
mon resource management and software performance
assurance problems into feedback control problems. One
can think of each QoS control problem as having a corre-
sponding control-loop instantiation that describes how this
particular QoS control problem is solved using feedback
control. We call such an instantiation a control-loop tem-
plate. Here we describe control-loop templates for the main

QoS control problems such as absolute convergence
guarantees, performance isolation, statistical multiplexing,
prioritization, relative differentiated service guarantees,
and optimization guarantees. The fundamental building
block in these templates is one that implements the basic
(absolute) convergence guarantee. Interconnecting such
blocks can lead to formulating more complex guarantees
such as relative guarantees, prioritization, and optimization
as feedback control problems.

The Absolute Convergence Guarantee
Since it is impossible to achieve absolute guarantees in a
system where load and resources are not known a priori, we
define the absolute guarantee problem as one of conver-
gence to a specified performance. The statement of the
problem is to ensure that a performance metric, R, i) con-
verges within a specified exponentially decaying envelope
to a fixed value, Rdesired, and that ii) the maximum deviation
R Rdesired − is bounded at all times, as shown in Figure 2(a).

80 IEEE Control Systems Magazine June 2003

R

Rdes.

Specified Maximum Deviation

Actual Performance, R

Time

Specified Decay Envelope

(a)

Approximate
System Model

Performance
Error Correction

Performance
Set Point

Controller
Actuator

(Resource Allocator)

Resource
Allocation

Software
System

Actual
Performance

Performance
SensorMeasured

Performance

(b)

Approximate
System Model

Approximate
System Model

First-Class
Allocation

Controller

Controller

Unused
Capacity

Unused
Capacity

Correction

Admitted
First-Class Clients

Admitted
ClientsActuator

(Resource Allocator)

Actuator
(Resource Allocator)

Software
System

Software
System

Class
Resource
Consumption

Resource
Consumption

Resource
Consumption

Performance
Sensor

Performance
Sensor

Performance
Sensor

Performance
Sensor

Measured
Consumption of First-Class Clients

Measured
Consumption of First-Class Clients

Measured
Consumption of Second-Class Clients

Measured
Consumption of Second-Class Clients

Leftover
Capacity

Total
Leftover
Capacity

Leftover
Capacity

Unused
Capacity

Correction

Admitted
Second-Class Clients

Controller

Controller

Actuator
(Resource Allocator)

Actuator
(Resource Allocator)

Software
System

Software
System

Class
Resource
Consumption

Virtual-Estate
Allocation

mi

mb

Best-Effort
Allocation

Admitted Best-Effort
Clients

(c) (d)

Figure 2. Control loop templates: (a) the absolute guarantee specification, (b) basic loop, (c) prioritization, and (d) excess capacity
management.

!"#$%%&%'%()*%&($&*!+,(!+,&!&-#$./&/$0)#&1.2-)(3&45)%)&/$0)#&
1.2-)(%& "!,& 1)& /#$6+2)2& 1'& %'%()*& 2)%+-,)#%& $#& 2!(!& "),()#&
$/)#!($#%&1!%)2&$,&(5)#*!7&1.2-)(&"$,%(#!+,(%8&$#&2)()#*+,)2&1'&
5+-597)6)7& /$0)#& *!,!-)#%3& :+,!77'8& !& !"#$%&'()&*+",-(
.,$#.''-#&;<=>?&%))@%&($&#)2.")&(5)&!6)#!-)&/$0)#&"$,%.)2&
!"#$%%&!&"$77)"(+$,&$A&*!"5+,)%&1'&"$,%$7+2!(+,-&0$#@7$!2%&!,2&
(.#,+,-& .,.%)2& *!"5+,)%& $AA3& & :+-.#)& B& %.**!#+C)%& (5)%)&
%$7.(+$,%&!,2&+77.%(#!()%&(5)+#&2+6)#%+('3&&

!"#! $%&%'()*(%+'(&,%-./0)1',2.3%,4556'3.
45)& #+"5& 2+6)#%+('& +,& /$0)#& *!,!-)*),(& 2+%".%%)2& !1$6)& "!,&
7)!2& ($& /#$17)*%& +A& !77& (5)& %$7.(+$,%& !#)& 2)/7$')2& !(& (5)& %!*)&
(+*)3&:$#&)D!*/7)8&(5)&E>&!,2&(5)&F=&1$(5&$/)#!()&$,&(5)&%!*)&
@,$1&;G9%(!()?&1.(&A$#&2+AA)#),(&*)(#+"%3&HA&.,"$$#2+,!()28&(5)&E>&
"!,& /$(),(+!77'& $6)#0#+()& (5)& F=& 7)!2+,-& ($& /$0)#& 1.2-)(&
6+$7!(+$,%&!,2&)6),(.!7&(5)#*!7&A!+7$6)#3&I%&!,$(5)#&)D!*/7)8&+,&
(5)& !1%),")& $A& +,A$#*!(+$,& !1$.(& (5)& 7$"!7& /$0)#& "!//)#J%&
!"(+$,%8& (5)& -7$1!7& /$0)#& "!//+,-& !7-$#+(5*& "!,& +,"$##)"(7'&
"$,A7+"(& 0+(5& (5)& 7$"!7& "!//)#& 7)!2+,-& ($& +,"#)!%)2& /)#9%)#6)#&
1.2-)(& 6+$7!(+$,%& $#& #)2.")2& /)#A$#*!,")3& K$(5& !#)& %)#+$.%&
"$##)"(,)%%& +%%.)%3&I%& !& (5+#2& +77.%(#!(+6)&)D!*/7)8& +A& (5)&<=>&
!,2&-#$./&"!//)#%&!#)&.,"$$#2+,!()28&(5)&<=>&"!,&"$,%$7+2!()&
*$#)&"!/!"+('&$,($&!&"$77)"(+$,&$A& %)#6)#%& (5!,&!77$0)2&1'& (5)&
-#$./& /$0)#& 1.2-)(3& H,& !22+(+$,& ($&)D")%%+6)& /)#A$#*!,")&
6+$7!(+$,%& ;+,)AA+"+),"'?8& (5)&<=>& "!,& /$(),(+!77'& #)!"(& ($& (5)&
7$0)#& .(+7+C!(+$,& ;1)"!.%)& $A& /$0)#& "!//+,-?& !,2& /!"@&)6),&
*$#)&0$#@7$!2%&$,($& (5)&%)#6)#8& 7)!2+,-&($&!&6+"+$.%&"'"7)&!,2&
%'%()*&+,%(!1+7+('3&

I%& 0)& "!,& %))8& 7!"@& $A& "$$#2+,!(+$,& "!,& 7)!2& ($& /#$17)*%& $A&
"$##)"(,)%%8& %(!1+7+('8& !,2&)AA+"+),"'3& L6)#!778& (5)& +%%.)%&
*$(+6!(+,-&(5)&,))2&A$#&"$$#2+,!(+$,&"!,&1)&"7!%%+A+)2&!%&A$77$0%&
M&;B?&$6)#7!/&+,&$1N)"(+6)&A.,"(+$,%&M&/)!@&6)#%.%&!6)#!-)8&7$"!7&
6%3& -7$1!78&)("38& ;O?& $6)#7!/& +,& !"(.!($#%8& ;P?& 2+AA)#),(& (+*)&
"$,%(!,(%8& !,2& ;Q?& 2+AA)#),(& /#$17)*& A$#*.7!(+$,%3& 45)%)& !#)&
%.**!#+C)2& +,& :+-.#)& B3& I*$,-& (5)%)& +%%.)%8& $6)#7!/& +,&

!"(.!($#%& +%& (5)& *$%(& +,%+2+$.%& %+,")& +(& "!,& /$%)& !& %)#+$.%&
/#$17)*&$A&"$##)"(,)%%&;!%&+,&(5)&A+#%(&(0$&)D!*/7)%&!1$6)?3&&&

R$0)6)#8&-+6),&(5)&-#$0+,-&"5!77),-)&A#$*&/$0)#&!,2&"$$7+,-8&
A.(.#)& 2!(!& "),()#%& 0+77& 7+@)7'& 2)/7$'& *.7(+/7)& /$0)#&
!,!-)),(&%$7.(+$,%&!(&(5)&%!*)&(+*)8&!,2&A)2)#!(+$,B&$A&(5)%)&
%$7.(+$,%&+%&2)%+#!17)3&H(&(5)#)A$#)&1)"$*)%&+*/$#(!,(&($&"$,%+2)#&
!& %$7.(+$,& (5!(& "$$#2+,!()%&2+AA)#),(&/$0)#& %$7.(+$,%&!"#$%%& (5)&
6!#+$.%&!D)%&$A&(5)&(!D$,$*'3&40$&@)'&%)(%&$A&S.)%(+$,%&)D+%(&+,&
(5)& "$,()D(& $A& %."5& !,& !#"5+()"(.#)3& 45)& A+#%(& /)#(!+,%& ($& (5)&
2)%+-,& $A& %."5& !& "$$#2+,!()2& !#"5+()"(.#)3& R$0& %5$.72&
+,2+6+2.!7& "$,(#$77)#%& +,()#!"(& 0+(5&)!"5& $(5)#& ($&),%.#)&
"$##)"(,)%%8& %(!1+7+('8& !,2&)AA+"+),"'T& H,&/!#(+".7!#8& 5$0&2$&0)&
A)2)#!()& (5)& +,2+6+2.!7& "$,(#$77)#%& ($& 1)& !0!#)& $A& $,)& !,$(5)#8&
1.(&0+(5$.(& #)S.+#+,-&-7$1!7&@,$07)2-)&$A& !77& (5)&/#$/)#(+)%&!(&
)!"5& $A& (5)& +,2+6+2.!7& "$,(#$77)#%T& :.#(5)#*$#)8& -+6),& (5)&
2',!*+%*&+,&A.(.#)&),()#/#+%)&),6+#$,*),(%8&5$0&2$&0)&2)%+-,&
(5)&%$7.(+$,&($&#)%/$,2&($&"5!,-)%&+,&(5)&,.*1)#&!,2&,!(.#)&$A&
"$,(#$77)#%& /!#(+"+/!(+,-& +,& (5)& $6)#!77& !#"5+()"(.#)8& !,2& ($&
"5!,-)%&+,&(5)&,!(.#)&$A&%'%()*%&!,2&!//7+"!(+$,%&2)/7$')2T&

45)&%)"$,2&%)(&$A&S.)%(+$,%&/)#(!+,%&($&(5)&+*/7+"!(+$,%&$A&%."5&
!& .,+A+)2& %$7.(+$,& $,& (5)& 2)%+-,& !,2& 2)/7$'*),(& $A& +,2+6+2.!7&
/$0)#& *!,!-)*),(& %$7.(+$,%3& I#)& !77& %$7.(+$,%&)S.!77'&
+*/$#(!,(T& U$)%& (5)& "$$#2+,!()2& !#"5+()"(.#)& !77$0& A$#&
A.,"(+$,!7+('& $A& $,)& "$,(#$77)#& ($& 1)& %+*/7+A+)28& $#&)6),&
%.1%.*)2& +,& !,$(5)#& "$,(#$77)#8& ($&),!17)& !,& $6)#!77& %+*/7)#&
2)%+-,T&U$&(5)&/$7+"+)%&!,2&*)"5!,+%*%&!(&(5)&+,2+6+2.!7&7)6)7&
,))2& ($& 1)& #)6+%+()2& +,& (5)& "$,()D(& $A& (5)+#& +,()#!"(+$,%& 0+(5&
$(5)#& "$,(#$77)#%T& R$0& %),%+(+6)& !#)& (5)& !,%0)#%& ($& (5)& !1$6)&
&& &&&&&&&&&&&&&&&&&&&&&&&&&
B& LA& "$.#%)8& !& "),(#!7+C)2& %$7.(+$,& (5!(& +*/7)*),(%& !77& +,2+6+2.!7&
%$7.(+$,%&!(&$,)&/7!")&0$.72&%$76)&(5)&"5!77),-)%&2+%".%%)28&1.(&-+6),&
(5)&1.%+,)%%&!%/)"(%&!#$.,2&2+AA)#),(&%$7.(+$,%&A#$*&*.7(+/7)&6),2$#%&
!,2& (5)& ()"5,+"!7& !%/)"(%& !#$.,2& +%$7!(+$,8& !1%(#!"(+$,8& !,2&!"")%%& ($&
+,A$#*!(+$,8&0)&2$,J(&1)7+)6)&(5+%&!//#$!"5&($&1)&/#!-*!(+"3&

&
7854,'.!-.9.:)),;8<&%';.=)1',.>&<&5'>'<%.&,:+8%':%4,'"./%#(0#.0.1-2(&#*+"$-*$%#-(*..#2",&$-1(2"33-#-,$(4",21(.3(0.5-#()&,&6-)-,$(1.'%$".,1(7)%'$"0'-('-!-'18(
&00#.&*+-18($")-(*.,1$&,$18(.9:-*$"!-(3%,*$".,18(&,2(&*$%&$.#1;<(=->(3-&$%#-1(.3(.%#(1.'%$".,(",*'%2-(7&;($+-(%1-(.3(&(*.,$#.'?$+-.#-$"*(*.#-($.(-,&9'-(3.#)&'(6%&#&,$--1(.3(
1$&9"'"$>8(79;(",$-''"6-,$(.!-#'.&2",6(.3($+-(*.,$#.'(*+&,,-'1($.(",*'%2-($+-(")0&*$(.3(.$+-#(*.,$#.''-#18(&,2(#-2%*",6($+-(,%)9-#(.3(",$-#3&*-1(&,2(&**-11($.(6'.9&'(2&$&<.

Our objective is thus to design a controller that decides
system’s settings (i.e. decides control variables) given the
current situation (i.e. knowledge of system structure and
measures or estimates of environment situation) in order to
keep the system satisfying its requirements. This objective can
be achieved by exploiting well established control theoretical
instruments, with a number of additional features relevant for
the assessment of actual software quality, as will be explained
in Sections IV and V.

A. A Representative Example

In this section we introduce a simple running case study,
consisting of a model for an image processing application.
The high level software model is shown in Figure 2. The
purpose of the system is to apply a filter to incoming images,
followed by a beautifying post-processing phase. It is equipped
with three different implementations of the filter: 1) direct
filtering via internal software, 2) iterative filtering via internal
software, and 3) direct filtering via outsourcing to an external
service. The DTMC system model is provided in Figure 3. The
figure shows that all operations have a certain probability of
failure (represented by transitions entering state SF). State S1
represents the point of choice between the different filtering
options. The probabilities that govern this choice and the
probability of applying one more iteration after the execution
of the iterative filter (represented by state S2) are the control
variables in our setting. Control variables are indicated by
probability variables Ci in Figure 3 (referring to Figures 2
and 3, c1a is the probability of choosing the iterative filter,
c1b is the probability of choosing the internal direct filter

and thus 1 − c1a − c1b the probability of outsourcing; c5 is
the probability of requesting another iteration of the iterative
filter). These values can be changed online by the controller
while the software is executing. The controller in fact observes
the overall behavior (i.e., the overall probability of success or
failure) and tries to guarantee the requested global reliability
requirement by adjusting the invocation probabilities.

!"#$%&
'()*%+(,$
-%+.(/%

!*%+#*(.%&
'()*%+

!,*%+,#)&
0(+%/*&'()*%+

12*%+,#)&
'()*%+

345*6
7+4/%55(,$

Fig. 2. Schema of the software system.

We assume that all the alternatives are implemented by
black-box services that can be invoked and observed from
outside only. For each of these services, a run-time monitor
collects failure (or success) rates and estimates its reliability

as the probability that a invocation to the service will fail3.
It is necessary to postulate in the environment the existence
of monitoring instruments . In fact, the reliability of the
computational units is time-varying and the overall reliability
depends on these values. Even if their nominal values are
known at design time, unpredictable events could alter them,
altering as a consequence also the software behavior. This is
not uncommon, since the alteration could for example simply
come from sharing components with other customers, so that,
at different times, their availability depends on load conditions
of computational resources. Service reliability for each server
are thus just observable values subject to variations during
time (disturbances).

!" !#

!$

!%

!&

!' !(

!)

*"

#+*"

,#-

,#.

#+,#-+,#.

*$

#+,/

*'

#+*$

#+*%

#+*&
#+*'

!/

,/

*&

*%

Fig. 3. DTMC mode for the example system.

By solving the equation system (1) for x̄0 it is possible to
obtain a closed formula that describes the explicit dependency
of reliability (s) on control variables (c) and measured relia-
bilities (r).

s = r0 · r6 ·
�
c1a · (−1 + c5) · r2

−1 + c5 · r2
+ c1br3 + (1− c1a − c1b) · r4

�
(2)

The formula of s shown in the Equation will be later used to
design the controller in Sections IV and V4.

IV. SOFTWARE MODELS AS DYNAMIC SYSTEMS

In this section we show how the dynamic evolution of the
running software, as observed via the corresponding DTMC
model, can be cast in the simple control-theoretical framework
of discrete-time dynamic systems [15], through which we
achieve self-adaptation of the behavior to react to changing
conditions in the environment. Due to space limitations, the
background theory can not be fully stated here, but the

3Estimates are here assumed to be statistically correct [12] and repre-
sentative of the average or worst case, depending on the desired analysis
scenario. Interested readers can refer to [3] for a deeper discussion about
DTMC parameters estimation at runtime, which is out of the scope of this
paper.

4The same formula can be obtained by exploiting state of the art techniques
from parametric model-checking and DTMC analysis in [13], [14]

286

events into a probability (typically, using a Bayesian approach,
as discussed in [3]). Blocks System and Controller in Figure 1
represent the modeled system and the controller, respectively.
The goal of the controller is to provide input values to the
system so that the resulting output (the observed sequence of
failure and success events) does not violate the requirement
expressed by the target, despite disturbances.

!"#$%"&&'% ()*$'+

,'-%#.#/0
1&"23

4-%/'$

52$6-&

7#86$ 96$86$

Fig. 1. Block diagram of the controlled system.

To understand what inputs and disturbances are in our
context, we must first discuss how we deal with adaptation
at the model level. We assume that the software model
describes all possible variations that may be chosen to support
adaptation. That is, the modeler anticipates a number of ways
through which the system may self adapt its behavior. In
a DTMC framework, choices can be expressed by using
probabilities, which label transitions corresponding to the
choice of different behaviors. By changing these probabilities
it is possible to either increase or decrease the chance that
a certain functionality is selected. In the extreme case, by
setting a probability to 0 (or 1) a certain functionality is either
excluded or included. These probabilities are inputs of our
controlled system, generated by the controller. By changing
them, the controller tries to ensure continuous satisfaction
of the target reliability despite disturbances. Disturbances, in
turn, are changes in the independent variables, also modeled
by transition probabilities, that represent physical phenomena,
like changes in the failure probability of external services or
in the user profiles.

To the best our knowledge, the control-theoretical approach
illustrated in this paper is a novel contribution to self-adaptive
system models. In this paper, we illustrate the approach
and provide an initial experimental assessment. The paper is
organized as follows. Section II introduces the claims of this
work and sketches the use of software models and abstractions
for dynamic adaptation and control. In Section III a DTMC
model for reliability is described and the case study used in
the rest of this paper is presented. Section IV proposes a
way to translate DTMC models into discrete time dynamic
systems. The control of the resulting dynamic system is shown
in Section V, that provides formal properties assessment
and shows the application of the proposed technique to the
chosen case study, evaluated in Section VI. Related works
are described in Section VII while section VIII concludes the
paper.

II. CONTROL THEORY AND SOFTWARE MODELING

The dynamics of software execution are very complex.
Nonetheless, being able to control those dynamics would mean
having a software capable to adapt and on-line tune itself
to meet the specified requirements. However, the presence
of intrinsic non linearities, the variety of usage profiles, the
distribution process and the interconnection of heterogeneous
components are some of the reasons why it is so hard to
directly provide a comprehensive behavioral model suitable for
control. At the same time, the need for continuous verification
of specific properties lead to the definition of simpler models.
These models are simple enough to allow the systematic syn-
thesis of controllers capable of driving the modeled dynamics
and still able to capture a number of aspects of the running
software that significantly characterize the software behavior
and support assessment of some of its properties.

In this paper we refer to a controller as any system that,
properly coupled to the software system, makes it fulfill its
requirements whenever they are feasible. Requirements can
be strict constraints on the behavior (e.g. reliability equal to a
certain value) or related to the optimization of certain metrics
on the observed software executions (e.g. minimization of
outsourcing costs or maximization of throughput).

This work is aimed at supporting the claim that control
theory provides a number of instruments that software engi-
neers can exploit to ensure the achievement of extra-functional
design goals in presence of changes in the environment. To
do so, we focus on the following main kinds of “reaction” the
controlled system should be able to provide:

1) change of the target requirements. If for some reason
the required nominal value of the overall reliability of
the composed system changes, the controller should be
able to drive the system toward a new operative state
satisfying the requirements.

2) robustness to sudden changes or fluctuations around
the nominal operative point assumed at design-time for
the environment phenomena. Interdependence among
software parts and components involves the use of third-
party services, remote storage, computing resources
out of the control of each company, and so on. All
these parts are characterized by the values of certain
QoS metrics, usually stated in convenient service level
agreements. During normal execution those values may
deviate from nominal values because of external factors
hardly predictable a priori (e.g. load conditions or hard-
ware failures). Actual values can be estimated on line
via monitoring.

3) robustness to accuracy errors in measurement and mon-
itoring. To capture relevant metrics of the execution we
rely on monitoring and/or other measurement proce-
dures. Each of these might get stuck into temporary bias
or might require a certain time to produce an appropriate
accuracy. We look for a controller able to provide a
reasonable behavior even in presence of transitory errors
on measured values. Such an ability, besides reducing

284

Controlling	 soBware	 vs.	 resources	 	
(Filieri	 et	 al.	 2011;	 	 Maggio	 et	 al.	 2012)	

MIMO	 systems	
(Dio	 et	 al.,	 2002,	 Lu	 et	 al.	 2005)	

Basic	 model	 architecture-‐based	
self-‐adaptaMon	

11	

Managed	 system	

Environment	

Managing	 system	

Self-‐adapMve	 soBware	 system	

monitor	 effect	

monitor	 adapt	

Non-‐controllable	 soBware,	 	
hardware,	 network,	 physical	 context	

Controllable	 soBware	

monitor	

Overview	

•  Architecture-‐based	 self-‐adaptaMon	 vs.	 control-‐
based	 self-‐adaptaMon	

•  Reference	 approaches	 for	 architecture-‐based	
self-‐adaptaMon	

•  Formal	 methods	 for	 self-‐adapMve	 systems	
•  AcMve	 formal	 methods	 for	 self-‐adaptaMon	
•  Wrap	 up	

Reference	 approaches	 for	
architecture-‐based	 self-‐adaptaMon	

•  1999:	 Oreizy	 et	 al.	 	
•  2003:	 MAPE-‐K	 IBM	
•  2004:	 Rainbow	 	
•  2007:	 3-‐layer	 reference	 model	 	
•  2012:	 FORMS	

Reference	 approaches	 for	 self-‐adaptaMon	
Oreizy	 et	 al.	 1999	

	
•  AdaptaMon	 management	

–  Life	 cycle	 of	 self-‐
adaptaMon	

–  System	 monitors	 and	
adapts	 itself	 	

•  EvoluMon	 management	
–  Change	 of	 applicaMon	
soBware	

– Maintain	 consistency	
	
P.	 Oreizy,	 M.	 Gorlick,	 R.	 Taylor,	 D.	 Heimbigner,	 G.	 Johnson,	 N.	 Medvidovic,	 A.	 Quilici,	 D.	 Rosenblum,	 and	 A.	
Wolf,	 An	 Architecture-‐Based	 Approach	 to	 Self-‐AdapMve	 SoBware,	 IEEE	 Intelligent	 Systems,	 May/June	 1999	

load or radio signal strength over minutes,
or historical data such as the movements
of threat forces over hours.

Figure 1 illustrates the broad spectrum of
self-adaptability. At one extreme, conditional
expressions are a form of self-adaptation; the
program evaluates an expression and alters
its behavior based on the outcome. Although
simplistic, conditional expressions are a
common mechanism for implementing adap-
tive behavior. For example, a just-in-time
compiler might invoke aggressive code-opti-
mization techniques if a function is called
frequently.

Online algorithms operate under the as-
sumption that future events (inputs) are uncer-
tain. Hence, they will occasionally perform an
expensive operation to more efficiently
respond to future operations.1 Online algo-
rithms are adaptive in that they leverage knowl-
edge about the problem and the input domain
to improve efficiency. A memory-cache-pag-
ing algorithm, for example, leverages the spa-
tial and temporal locality of memory refer-
ences in determining which cached page to
evict when making room for a new page.

Generic and parameterized algorithms
provide behaviors that are parameterized,
usually through type instantiation or exter-
nal inputs. Generic or polymorphic algo-
rithms adapt by conforming to different data
types. The C++ Standard Template Library,
for example, provides generic iterator classes
used to traverse a variety of data structures.

Algorithm selection uses properties of the
operating environment to choose the most
effective algorithm among a fixed set of avail-
able algorithms. Thus, a system that uses algo-
rithm selection adapts to changes in its operat-
ing environment by switching among a set of
algorithms. The Self dynamic optimizing com-
piler, for example, uses program-profiling data
collected during program execution to select
different code-optimization algorithms.2

At the other extreme, evolutionary program-
ming and machine-learning techniques are
adaptive in that they use properties of the oper-
ating environment and knowledge gained from
previous attempts to generate new algorithms.3

Generally, approaches near the spectrum’s
bottom intertwine concerns regarding soft-
ware adaptation and application-specific
behavior. For example, a conditional expres-
sion combines the adaptation’s specification
with the application’s specification. Conse-
quently, understanding, analyzing, and mod-
ifying the two independently is arduous.

Approaches near the top more clearly sepa-
rate software-adaptation concerns and appli-
cation-specific functionality. For example,
algorithm generation separates the adapta-
tion’s specification from the produced algo-
rithm. Separating the concerns of software
adaptation from software function facilitates
their independent analysis and evolution.

Software adaptation in-the-
large

While technical advances in narrow areas
of adaptation technology provide some ben-
efit, the greatest benefit will accrue by devel-
oping a comprehensive adaptation method-
ology that spans adaptation-in-the-small to
adaptation-in-the-large, and then develops
the technology that supports the entire range
of adaptations. Figure 2 illustrates just such
a methodology that we are investigating.

The upper half of the diagram, labeled
“adaptation management,” describes the life-
cycle of adaptive software systems. The life-
cycle can have humans in the loop or be fully
autonomous. “Evaluate and monitor obser-
vations” refers to all forms of evaluating and
observing an application’s execution, includ-
ing, at a minimum, performance monitoring,
safety inspections, and constraint verifica-
tion. “Plan changes” refers to the task of
accepting the evaluations, defining an appro-

priate adaptation, and constructing a blue-
print for executing that adaptation. “Deploy
change descriptions” is the coordinated con-
veyance of change descriptions, components,
and possibly new observers or evaluators to
the implementation platform in the field.
Conversely, deployment might also extract
data, and possibly components, from the run-
ning application and convey them to some
other point for analysis and optimization.

Adaptation management and consistency
maintenance play key roles in this approach.
Although mechanisms for runtime software
change are available in operating systems
(for example, dynamic-link libraries in Unix
and Microsoft Windows), component object
models, and programming languages, these
facilities all share a major shortcoming: they
do not ensure the consistency, correctness,
or other desired properties of runtime
change. Change management is a critical
aspect of runtime-system evolution that
identifies what must be changed; provides
the context for reasoning about, specifying,
and implementing change; and controls
change to preserve system integrity. With-
out change management, the risks engen-
dered by runtime modifications might out-
weigh those associated with shutting down
and restarting a system.

Software adaptation is a complex process
and is further complicated by change drivers
ranging from purposeful adjustments in

56 IEEE INTELLIGENT SYSTEMS

Maintain
consistency

and system integrity

Plan changes

Deploy change
descriptions

Enact changes and
collect observations

Evolution
management

Architectural
model

Implementation

Adaptation
management

Evaluate and
monitor

observations

Figure 2. High-level processes in a comprehensive, general-purpose approach to self-adaptive software systems.

Reference	 approaches	 for	 self-‐adaptaMon	
IBM	 MAPE-‐K	 2003	

	
•  Autonomic	 manager	

–  Reference	 model	
–  Four	 key	 funcMons	
	 	 	 	 +	 knowledge	

•  Four	 types	 of	 self-‐
adaptaMons	
–  Self-‐configuraMon	
–  Self-‐opMmizaMon	
–  Self-‐healing	
–  Self-‐protecMon	

	
Kephart	 and	 Chess,	 The	 vision	 of	 autonomic	 CompuMng,	 IEEE	 Computer,	 January	 2003	 	 	 	 	 	 	 	 	 	 	 	

44 Computer

interactions among autonomic elements as it will
from the internal self-management of the individual
autonomic elements—just as the social intelligence
of an ant colony arises largely from the interactions
among individual ants. A distributed, service-ori-
ented infrastructure will support autonomic ele-
ments and their interactions.

As Figure 2 shows, an autonomic element will
typically consist of one or more managed elements
coupled with a single autonomic manager that con-
trols and represents them. The managed element
will essentially be equivalent to what is found in
ordinary nonautonomic systems, although it can
be adapted to enable the autonomic manager to
monitor and control it. The managed element could
be a hardware resource, such as storage, a CPU, or
a printer, or a software resource, such as a data-
base, a directory service, or a large legacy system.

At the highest level, the managed element could
be an e-utility, an application service, or even an
individual business. The autonomic manager dis-
tinguishes the autonomic element from its nonau-
tonomic counterpart. By monitoring the managed
element and its external environment, and con-
structing and executing plans based on an analysis

of this information, the autonomic manager will
relieve humans of the responsibility of directly man-
aging the managed element.

Fully autonomic computing is likely to evolve as
designers gradually add increasingly sophisticated
autonomic managers to existing managed elements.
Ultimately, the distinction between the autonomic
manager and the managed element may become
merely conceptual rather than architectural, or it
may melt away—leaving fully integrated, auto-
nomic elements with well-defined behaviors and
interfaces, but also with few constraints on their
internal structure.

Each autonomic element will be responsible for
managing its own internal state and behavior and
for managing its interactions with an environment
that consists largely of signals and messages from
other elements and the external world. An element’s
internal behavior and its relationships with other
elements will be driven by goals that its designer
has embedded in it, by other elements that have
authority over it, or by subcontracts to peer ele-
ments with its tacit or explicit consent. The element
may require assistance from other elements to
achieve its goals. If so, it will be responsible for
obtaining necessary resources from other elements
and for dealing with exception cases, such as the
failure of a required resource.

Autonomic elements will function at many levels,
from individual computing components such as
disk drives to small-scale computing systems such
as workstations or servers to entire automated
enterprises in the largest autonomic system of all—
the global economy.

At the lower levels, an autonomic element’s range
of internal behaviors and relationships with other
elements, and the set of elements with which it can
interact, may be relatively limited and hard-coded.
Particularly at the level of individual components,
well-established techniques—many of which fall
under the rubric of fault tolerance—have led to the
development of elements that rarely fail, which is
one important aspect of being autonomic. Decades
of developing fault-tolerance techniques have pro-
duced such engineering feats as the IBM zSeries
servers, which have a mean time to failure of sev-
eral decades.

At the higher levels, fixed behaviors, connections,
and relationships will give way to increased
dynamism and flexibility. All these aspects of auto-
nomic elements will be expressed in more high-
level, goal-oriented terms, leaving the elements
themselves with the responsibility for resolving the
details on the fly.

Autonomic manager

Knowledge

Managed element

Analyze Plan

Monitor Execute

Figure 2. Structure of an autonomic element. Elements interact with other
elements and with human programmers via their autonomic managers.

Reference	 approaches	 for	 self-‐adaptaMon	 	
Rainbow	 2004	 	

	
•  Framework	 realizes	

MAPE	 control	 loop	
•  Uses	 architecture	 model	

of	 system	 and	 context	
•  Checks	 constraints	
•  Adapts	 running	 system	 if	

violaMon	 is	 detected	

	
D.	 Garlan,	 S-‐W.	 Cheng,	 A.C.	 Huang,	 B.	 Schmerl,	 P.	 Steenkiste,	 Rainbow:	 Architecture-‐	 Based	 Self-‐
AdaptaMon	 with	 Reusable	 Infrastructure,	 IEEE	 Computer,	 October	 2004	 	 	 	 	 	 	 	 	 	 	 	

October 2004 47

nisms from scratch for each new system would ren-
der the approach prohibitively expensive.

Our Rainbow framework attempts to address
both problems. By adopting an architecture-based
approach, it provides reusable infrastructure together
with mechanisms for specializing that infrastructure
to the needs of specific systems. These specialization
mechanisms let the developer of self-adaptation capa-
bilities choose what aspects of the system to model
and monitor, what conditions should trigger adap-
tation, and how to adapt the system.

THE RAINBOW FRAMEWORK
Figure 2 shows the Rainbow framework’s con-

trol loop for self-adaptation. Rainbow uses an
abstract architectural model to monitor an execut-
ing system’s runtime properties, evaluates the
model for constraint violation, and—if a problem
occurs—performs global- and module-level adap-
tations on the running system.

Software architectures
Rainbow adopts a standard view of software

architecture that is typically used today at design
time to characterize a system to be built. Specifi-
cally, an architecture is represented as a graph of
interacting computational elements.4 Nodes in the
graph, called components, represent the system’s
principal computational elements and data stores,
including clients, servers, databases, and user inter-
faces. Arcs, called connectors, represent the path-
ways for interaction between the components.
Additionally, architectural elements may be anno-
tated with various properties, such as expected
throughputs, latencies, and protocols of interac-
tion. Components themselves may represent com-
plex systems, which are represented hierarchically
as subarchitectures.

However, unlike traditional uses of software
architecture as strictly a design-time artifact,
Rainbow includes a system’s architectural model
in its runtime system. In particular, developers of
self-adaptation capabilities use a system’s software
architectural model to monitor and reason about
the system. Using a system’s architecture as a con-
trol model for self-adaptation holds promise in sev-
eral areas. As an abstract model, an architecture
can provide a global perspective of the system and
expose important system-level behaviors and prop-
erties. As a locus of high-level system design deci-
sions, an architectural model can make a system’s
topological and behavioral constraints explicit,
establishing an envelope of allowed changes and
helping to ensure the validity of a change.

Figure 3 shows one example of an architecture
in which the components represent Web clients and
server clusters. Each server cluster has a subarchi-

System

Control

Adapt Monitor

Figure 1. External control of self-adaptation uses external models to monitor and
modify a system dynamically.

Translation infrastructure

Executing system

Architecture layer

System API

Constraint
evaluator

Adaptation
engine

Model
manager

Mappings

Strategies
and tactics

Rules

Adaptation
executor

Types and
properties

System layer

Operators

Discovery ProbesResource
discoveryEffectors

Gauges

Figure 2. Rainbow framework. The framework uses an abstract model to monitor
an executing system’s runtime properties, evaluates the model for constraint vio-
lation, and—if a problem occurs—performs adaptations on the running system.

Client1 Client2 Client3 Client4 Client5 Client6

ServerGrp2 ServerGrp3

Component ServerGrp1
(ServerGrpRep)

ServerGrp1

Server3Server2Server1

Figure 3. Client-server system software architecture. This model represents the
architecture as a hierarchical graph of interacting components.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 1, 2008 at 11:14 from IEEE Xplore. Restrictions apply.

Reference	 approaches	 for	 self-‐adaptaMon	 	
3-‐Layer	 reference	 model	 2007	 	

	
Kramer	 and	 Magee,	 Self-‐adaptaMon:	 an	 architecture	 challenge,	 Future	 of	 SoBware	 Engineering,	
FOSE	 2007	 	 	 	 	 	 	 	 	 	 	 	

!"#$%&'(")*+,-.,"$"/*0%+1(/$+/!%$*("*%$2.,"2$*/,*"$3*
2/0/$2* %$.,%/$#* 4'* /10/* &0'$%* ,%* ("* %$2.,"2$* /,* "$3*
,45$+/(6$2* %$7!(%$#*,8* /1$* 2'2/$-* ("/%,#!+$#* 8%,-* /1$*
&0'$%*04,6$9*:1(2*&0'$%*+0"*("/%,#!+$*"$3*+,-.,"$"/2;*
%$+%$0/$* 80(&$#* +,-.,"$"/2;* +10")$* +,-.,"$"/*
("/$%+,""$+/(,"2* 0"#* +10")$* +,-.,"$"/* ,.$%0/(")*
.0%0-$/$%29* </* +,"2(2/2* ,8* 0* 2$/* ,8* .&0"2* 31(+1* 0%$*
0+/(60/$#*("*%$2.,"2$*/,*+10")$2*,8*/1$*,.$%0/(")*2/0/$*
,8* /1$* !"#$%&'(")* 2'2/$-9* =,%* $>0-.&$?* 31$"* 0*
+,-.,"$"/* 80(&2?* +10")$* -0"0)$-$"/* +0"* 88+/* 0*
%$.0(%*$(/1$%*4'*+10")(")*+,-.,"$"/*+,""$+/(,"2*,%*4'*
+%$0/(")* "$3* +,-.,"$"/29* <"* %,4,/(+* 2'2/$-2?* /1(2*
&0'$%*102*4$$"*(-.&$-$"/$#*("*0*"!-4$%*,8*30'2*8%,-*
+,"#(/(,"0&* 2$7!$"+(")* 2'2/$-2* @ABC* /,* 2$/2* ,8* 2/0/$*
-0+1("$29*D,%E* ("* /1$*"$/3,%E*-0"0)$-$"/*0%$0*102*
.%,#!+$#* &0")!0)$2* 2!+1* 02* F,"#$%* @AGC* 31(+1*
.$%8,%-*0*2(-(&0%*8!"+/(,"*/,*/1$*.&0""(")*&0")!0)$2*("*
/1$*+,"/$>/*,8*2'2/$-29*F,"#$%*(2*22"/(0&&'*0*&0")!0)$*
31(+1* $>$+!/$* 0+/(,"2* ("* %$2.,"2$* /,* %$+,)"(2(")*
H.,22(4&$*+,-.&$>I*6"/29*:1$*$22$"/(0&*+10%0+/$%(2/(+*
,8*/1(2*+10")$*-0"0)$-$"/*&0'$%*(2*/10/*(/*+,"2(2/2*,8*0*
2$/* ,8* .%$J2.$+(8($#* .&0"2* 31(+1* 0%$* 0+/(60/$#* ("*
%$2.,"2$* /,* 2/0/$* +10")$* 8%,-* /1$* 2'2/$-*4$&,39*:1$*
&0'$%* +0"* %$2.,"#* 7!(+E&'* /,* "$3* 2(/!0/(,"2* 4'*
$>$+!/(")*310/*0%$*("*$22$"+$*.%$J+,-.!/$#*.&0"29*<8*0*
2(/!0/(,"* (2* %$.,%/$#* 8,%* 31(+1* 0* .&0"* #,$2* ",/* $>(2/*
/1$"* /1(2* &0'$%*-!2/* ("6,E$* /1$* 2$%6(+$2*,8* /1$*1()1$%*
.&0""(")*&0'$%9*<"*0##(/(,"?*"$3*),0&2*8,%*0*2'2/$-*3(&&*
("6,&6$*"$3*.&0"2*4$(")*("/%,#!+$#*("/,*/1(2*&0'$%9**

!"#!$%&'()&*&+,-,*.(
:1$*!..$%-,2/*&0'$%*,8*K0/L2*/1%$$*&0'$%*0%+1(/$+/!%$*(2*
/1$* #$&(4$%0/(,"* &0'$%9* :1(2* &0'$%* +,"2(2/2* ,8* /(-$*
+,"2!-(")*+,-.!/0/(,"2*2!+1*02*.&0""(")*31(+1*/0E$2*
/1$* +!%%$"/* 2/0/$* 0"#* 0* 2.$+(8(+0/(,"* ,8* 0* 1()1J&6&*
),0&* 0"#* 0//$-./2* /,* .%,#!+$* 0* .&0"* /,* 0+1(6* /10/*
),0&9* M"* $>0-.&$* ("* %,4,/(+2* 3,!&#* 4$*)(6$"* /1$*
+!%%$"/* .,2(/(,"* ,8* 0* %,4,/* 0"#* 0* -0.* ,8* (/2*
$"6(%,"-$"/*.%,#!+$*0*%,!/$*.&0"*8,%*$>$+!/(,"*4'*/1$*
2$7!$"+(")*&0'$%9*N10")$2*("*/1$*$"6(%,"-$"/?*2!+1*02*
,42/0+&$2* /10/* 0%$* ",/* ("* /1$* -0.?* 3(&&* ("6,&6$* %$J
.&0""(")9* :1$* %,&$* ,8* /1$* $7!(60&$"/* &0'$%* ("* 0* 2$&8J
-0"0)$#* 2'2/$-* (2* K,0&* O0"0)$-$"/9* :1(2* &0'$%*
.%,#!+$2* +10")$* -0"0)$-$"/* .&0"2* ("* %$2.,"2$* /,*
%$7!$2/2* 8%,-* /1$* &0'$%* 4$&,3* 0"#* ("* %$2.,"2$* /,* /1$*
("/%,#!+/(,"*,8*"$3*),0&29*=,%*$>0-.&$?* (8* /1$*),0&* ("*
/,*-0("/0("* 2,-$* 0%+1(/$+/!%0&* .%,.$%/'* 2!+1* 02* /%(.&$*
%$#!"#0"+'* 8,%* 0&&* 2$%6$%2?* /1(2* &0'$%* +,!&#* 4$*
%$2.,"2(4&$* 8,%* 8("#(")* /1$* %$2,!%+$2* ,"* 31(+1* /,*
+%$0/$* "$3* +,-.,"$"/2* 08/$%* 80(&!%$* 0"#* .%,#!+(")* 0*
.&0"* 02* 1,3* /,* +%$0/$* 0"#* ("/$)%0/$* /1$2$* "$3*
+,-.,"$"/2* /,* /1$*+10")$*-0"0)$-$"/*&0'$%9*</*+,!&#*
4$* %$2.,"2(4&$* 8,%* #$+(#(")* /1$* ,./(-0&* .&0+$-$"/* ,8*
2$%6$%2* 8,%* &,0#* 40&0"+(")* .!%.,2$29* M2* 3$* 3(&&*

0##%$22* 8!%/1$%* ("* /1$* "$>/* 2$+/(,"* /1$%$* 0%$* -0"'*
%$2$0%+1* (22!$2*1$%$*02* /,*1,3* /,* %$.%2"/*1()1* &6&*
2'2/$-*),0&2?* 1,3* /,* 2'"/1$2(P$* +10")$*-0"0)$-$"/*
.&0"2* 8%,-* /1$2$*),0&2* 0"#* 1,3*)$"$%0&* ,%* #,-0("*
2.$+(8(+*/1(2*&0'$%*21,!&#*4$9*

=()!%$* A* 2!--0%(2$2* ,!%* .%,.,2$#* /1%$$* &0'$%*-,#$&*
8,%* 0* 2$&8* -0"0)$#* 2'2/$-* 8,&&,3(")* K0/L2* 3,%E* ,"*
0%+1(/$+/!%$2*8,%*%,4,/(+*2'2/$-29*:1$*.%("+(.0&*+%(/$%(0*
8,%* .&0+(")* 8!"+/(,"* ("* #(88$%$"/* &0'$%2* ("* K0/L2*
0%+1(/$+/!%$*(2*,"$*,8*/(-$*2+0&$*0"#*/1(2*3,!&#*2$$-*/,*
0..&'*$7!0&&'*3$&&*/,*2$&8*-0"0)$#*2'2/$-29*<--$#(0/$*
8$$#40+E*0+/(,"2*0%$*0/*/1$*&,3$2/*&$6$&*0"#*/1$*&,")$2/*
0+/(,"2* %$7!(%(")* #$&(4$%0/(,"* 0%$* 0/* /1$* !..$%-,2/*
&6&9* D$* 3,!&#* $-.102(P$* /10/* 3$* #,* ",/* +,"2(#$%*
/1(2* 0"* (-.&$-$"/0/(,"* 0%+1(/$+/!%$* 4!/* %0/1$%* 0*
+,"+$./!0&* ,%* %$8$%$"+$* 0%+1(/$+/!%$* 31(+1* (#$"/(8($2*
/1$* "$+$220%'* 8!"+/(,"0&(/'* 8,%* 2$&8* -0"0)$-$"/9* D$*
3(&&* !2$* (/* ("* /1$* "$>/* 2$+/(,"* /,* ,%)0"(2$* 0"#* 8,+!2*
#(2+!22(,"* ,8* /1$* %$2$0%+1* +10&&$")$2* .%$2$"/* 4'* 2$&8*
-0"0)$-$"/9*

*

"#$%!
&$'$()*)'+

,-$'()!
&$'$()*)'+

,#*.#')'+!
,#'+/#%

!"#"$%

&'#()*+,-"./(%

!" !#

$" $#

&'#()*+01#(%

01#(+2*3$*%"

%

%& %'
"#$%!
&$'$()*)'+

,-$'()!
&$'$()*)'+

,#*.#')'+!
,#'+/#%

!"#"$%

&'#()*+,-"./(%

!" !#

$" $#

&'#()*+01#(%

01#(+2*3$*%"

%

%& %'

*
/0+12,(3(4(562,,(7&8,2(92:60.,:.12,()%;,'(<%2(

(=,'<>)&*&+,-,*."(

(

#! ?,@,&2:6(A@@1,@(
<"* /1$* .%$6(,!2* 2$+/(,"* 3$* ,!/&("$#* 0* /1%$$* &0'$%*
0%+1(/$+/!%$* -,#$&* 31(+1* (2* ("/$"#$#* 02* 0* 8,%-* ,8*
%8%$"+$* -,#$&* %0/1$%* /10"* 02* 0*)!(#$* /,* 1,3* 2$&8*
-0"0)$#* 2,8/30%$* 21,!&#* 4$* (-.&$-$"/$#9* <"* /1(2*
2$+/(,"?*3$*!2$*/1$*-,#$&*/,*2/%!+/!%$*/1$*.%$2$"/0/(,"*
,8* /1$* %$2$0%+1* (22!$2* 3$* 2$$* .%2"/$#* 4'* /1$*
+10&&$")$* ,8* (-.&$-$"/(")* 2$&8J-0"0)$#* 2'2/$-29* :,*
)%,!"#* /1(2* #(2+!22(,"?* 3$* #%03* $>0-.&$2* 8%,-* /1$*
3,%E*3(/1*31(+1*3$* 0%$*-,2/* 80-(&(0%* Q* "0-$&'* ,!%*
,3"9*

#"3!B%-C%*,*.(B%*.2%'(7&8,2(
D$* 0%$* +,"+$%"$#* 3(/1* -0"0)$-$"/* 0/* /1$*
0%+1(/$+/!%0&* &$6$&* 31$%$* 3$* +,"2(#$%* 0* 2'2/$-* /,*

	
•  Reference	 model	 based	 on	 Gat’s	

3-‐layer	 roboMcs	 model	
•  Component	 control	 realizes	

applicaMon	 funcMons	
•  Change	 management	 handles	

adaptaMons	 of	 component	 layer	
based	 on	 set	 of	 plans	 	

•  Goal	 management	 produces	
change	 management	 plans	
when	 needed	 (e.g.,	 to	 deal	 with	
new	 condiMons	 or	 goals)	 	

Reference	 approaches	 for	 self-‐adaptaMon	 	
FORMS	 2012	 	

	
D.	 Weyns,	 S.	 Malek,	 J.	 Andersson,	 	 FORMS:	 Formal	 reference	 model	 for	 self-‐adaptaMon,	 ACM	 TransacMons	
on	 Autonomous	 and	 AdapMve	 Systems,	 TAAS	 7(1),	 2012	 	 	 	 	 	 	 	 	 	 	 	

	
•  FOrmal	 Reference	 Model	 for	 Self-‐adaptaMon	
•  Integrates	 different	 perspecMves	 on	 self-‐
adaptaMon	
–  ReflecMon	 perspecMve	 	
– MAPE-‐K	 perspecMve	
–  DistribuMon	 perspecMve	

FORMS:	 Running	 Example	
Traffic	 jam	 monitoring	

19	

	

D.	 Weyns,	 R.	 Haesevoets,	 A.	 Helleboogh,	 T.	 Holvoet,	 W.	 Joosen,	 The	 MACODO	 Middleware	 for	 Context-‐Driven	
Dynamic	 Agent	 OrganzaMons,	 ACM	 TransacMon	 on	 Autonomous	 and	 AdapMve	 Systems,	 5(1):3.1–3.29,	 2010.	
	

20	

Running	 Example:	 traffic	 jam	 monitoring	

21	

Running	 Example:	 traffic	 jam	 monitoring	

FORMS	 ReflecMon	 PerspecMve	

22	

23	

FORMS	 ReflecMon	 PerspecMve	
Self-‐adapMve	 system	

FORMS	 ReflecMon	 PerspecMve	

24	

Self-‐adapMve	 system	

25	

FORMS	 ReflecMon	 PerspecMve	
Environment	

26	

FORMS	 ReflecMon	 PerspecMve	
Environment	

27	

FORMS	 ReflecMon	 PerspecMve	
Base-‐Level	 Subsystem	

28	

FORMS	 ReflecMon	 PerspecMve	
Base-‐Level	 Subsystem	

29	

ReflecMve	 Subsystem	
FORMS	 ReflecMon	 PerspecMve	

30	

ReflecMve	 Subsystem	
FORMS	 ReflecMon	 PerspecMve	

31	

FORMS	 Distributed	 CoordinaMon	 PerspecMve	

32	

FORMS	 Distributed	 CoordinaMon	 PerspecMve	
Local	 Self-‐AdapMve	 System	

33	

FORMS	 Distributed	 CoordinaMon	 PerspecMve	
Local	 Managed	 System	 –	 Self-‐AdapMve	 Unit	

34	

FORMS	 Distributed	 CoordinaMon	 PerspecMve	
Local	 Managed	 System	 –	 Self-‐AdapMve	 Unit	

35	

FORMS	 Distributed	 CoordinaMon	 PerspecMve	
CoordinaMon	 Mechanism	

36	

ping/echo	 msgs	

FORMS	 Distributed	 CoordinaMon	 PerspecMve	
CoordinaMon	 Mechanism	

FORMS	 MAPE	 PerspecMve	

37	

38	

FORMS	 MAPE	 PerspecMve	
Local	 ReflecMve	 ComputaMons	

39	

FORMS	 MAPE	 PerspecMve	
Local	 ReflecMve	 ComputaMons	

40	

sense	
adapt	

perceive	

FORMS	 MAPE	 PerspecMve	
Local	 ReflecMve	 ComputaMons	

41	

FORMS	 MAPE	 PerspecMve	
ReflecMon	 Models	

42	

FORMS	 MAPE	 PerspecMve	
ReflecMon	 Models	

(A	 glimpse	 of)	 FORMS	 in	 acMon	

43	

FORMS	 in	 acMon	

44	

FORMS	 in	 acMon	

45	

...	

...	

...	

FORMS	 in	 acMon	

46	

FORMS	 in	 acMon	

16 · Danny Weyns, Sam Malek, and Jesper Andersson

Timeout
ΞSelfHealingManager
Tick
n! : Name

∃n! : Name; t : Time • (n!, t) ∈ coordinationMechanism.pingTime ∧
t + coordinationMechanism.waitTime > time �

The schema tells us that a timeout does not change its state. A timeout happens when the clock
makes a tick. The predicate states that a timeout for a particular camera is reached when the
time after the tick exceeds the last ping time for that camera plus the wait time.

We now explain how self-healing is realized for one of the cameras. The timeout for self-
healing manager 1 after the crash of camera 2 is defined as:

Timeout1
Timeout
ΞSelfHealingManagerOneT2

time = 4470
n! = 2

The timeout happens when the clock makes a tick at time “4470” (recall that the ping message
to camera 2 was sent at time “4430” and the waiting time is 40 time units). The timeout applies
for camera 2.

Finally, the recovery of camera 1 for the failure of camera 2 is defined as:
CameraOneRecoversFromFailureCameraTwo
∆TrafficJamMonitoringSystemT3

TrafficEnvironmentT3

Timeout1
lcs1?, lcs1! : SituatedLocalCameraSystem
camera : Attribute
cam : EnvironmentRepresentation
n : Name

{camera} = first(c?) ∧
traffic communication channel = traffic communication channel \ {n �→ cam} ∧
...
lcs1?.myName = 1 ∧
lcs1!.context = lcs1?.context \ {camera} ∧
lcs1!.selfHealingSubsystem = updateSelfHealingSubsystem(lcs1?, camera, cam,n) ∧
lcs1!.localTrafficMonitoringSystem =

adaptLocalTrafficMonitoringSystem(lcs1?, camera, cam,n) ∧
localCamaraSystems � = localCamaraSystems \ {lcs1?} ∪ {lcs1!}

The specification declaratively specifies the adaptations the local camera system after the failure
of the camera. The first part of the predicate selects the failing camera using the camera failure
event. Next, the communication channels are updated. Then, some minor aspects are omitted.
Subsequently, the recovering local camera system is selected (with myName = 1) and the failing
camera is removed from its context. Finally, the adaptation is specified, consisting of two parts:
an update of the state of the self-healing subsystem and the actual adaptation of the local traffic
monitoring system (using two helper functions that are omitted here). From an operational
point of view, the self-healing manager will update its state and apply the adaptation of the
local traffic monitoring system using various read and write operations.
ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Danny Weyns, Sam Malek, and Jesper Andersson

Timeout
ΞSelfHealingManager
Tick
n! : Name

∃n! : Name; t : Time • (n!, t) ∈ coordinationMechanism.pingTime ∧
t + coordinationMechanism.waitTime > time �

The schema tells us that a timeout does not change its state. A timeout happens when the clock
makes a tick. The predicate states that a timeout for a particular camera is reached when the
time after the tick exceeds the last ping time for that camera plus the wait time.

We now explain how self-healing is realized for one of the cameras. The timeout for self-
healing manager 1 after the crash of camera 2 is defined as:

Timeout1
Timeout
ΞSelfHealingManagerOneT2

time = 4470
n! = 2

The timeout happens when the clock makes a tick at time “4470” (recall that the ping message
to camera 2 was sent at time “4430” and the waiting time is 40 time units). The timeout applies
for camera 2.

Finally, the recovery of camera 1 for the failure of camera 2 is defined as:
CameraOneRecoversFromFailureCameraTwo
∆TrafficJamMonitoringSystemT3

TrafficEnvironmentT3

Timeout1
lcs1?, lcs1! : SituatedLocalCameraSystem
camera : Attribute
cam : EnvironmentRepresentation
n : Name

{camera} = first(c?) ∧
traffic communication channel = traffic communication channel \ {n �→ cam} ∧
...
lcs1?.myName = 1 ∧
lcs1!.context = lcs1?.context \ {camera} ∧
lcs1!.selfHealingSubsystem = updateSelfHealingSubsystem(lcs1?, camera, cam,n) ∧
lcs1!.localTrafficMonitoringSystem =

adaptLocalTrafficMonitoringSystem(lcs1?, camera, cam,n) ∧
localCamaraSystems � = localCamaraSystems \ {lcs1?} ∪ {lcs1!}

The specification declaratively specifies the adaptations the local camera system after the failure
of the camera. The first part of the predicate selects the failing camera using the camera failure
event. Next, the communication channels are updated. Then, some minor aspects are omitted.
Subsequently, the recovering local camera system is selected (with myName = 1) and the failing
camera is removed from its context. Finally, the adaptation is specified, consisting of two parts:
an update of the state of the self-healing subsystem and the actual adaptation of the local traffic
monitoring system (using two helper functions that are omitted here). From an operational
point of view, the self-healing manager will update its state and apply the adaptation of the
local traffic monitoring system using various read and write operations.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Reference	 approaches	 for	 self-‐adaptaMon	 	
FORMS	 2012	 	

	
•  Integrated,	 extensible	 model	
•  Formal	 underpinning	
•  Focus	 on	 modeling	 and	 reasoning	 about	 structural	
aspects	 of	 self-‐adapMve	 systems	

•  Reference	 model	 can	 be	 mapped	 to	 different	
architectures	 	

•  Vocabulary	 for	 domain	 of	 self-‐adapMve	 systems	
	

Overview	

•  Architecture-‐based	 self-‐adaptaMon	 vs.	 control-‐
based	 self-‐adaptaMon	

•  Reference	 approaches	 for	 architecture-‐based	
self-‐adaptaMon	

•  Formal	 methods	 for	 self-‐adapMve	 systems	
•  AcMve	 formal	 methods	 for	 self-‐adaptaMon	
•  Wrap	 up	

Formal	 methods	 for	 self-‐adaptaMon	
A	 selecMon	

•  2006:	 Zhang	 &	 Cheng	 (design	 Mme	 verificaMon	
and	 model	 transformaMon)	

•  2009:	 Epifani	 et	 al.	 (K	 models	 at	 runMme)	 	
•  2011:	 Calinescu	 et	 al.	 	 (MAPE	 funcMons	 at	
runMme)	

•  2013:	 Ghezzy	 et	 al.	 (model	 interpretaMon)	

	
D.	 Weyns,	 U.	 IBikhar,	 D.	 Gil	 de	 la	 Iglesia,	 and	 T.	 Ahmad,	 A	 Survey	 on	 Formal	 Methods	 in	 Self-‐AdapMve	
Systems,	 FiBh	 InternaMonal	 C*	 Conference	 on	 Computer	 Science	 and	 SoBware	 Engineering	 2012	

Formal	 methods	 for	 self-‐adapMve	 systems	 	
Zhang	 and	 Cheng	 2006	 	

	
•  Different	 classes	 of	

adaptaMons	
–  one-‐point,	 guided	
adaptaMon,	 overlap	
adaptaMon	

•  Process	 to	 create	 and	
verify	 formal	 models	
(Petri	 nets	 and	 LTL)	

•  AutomaMcally	 generate	
programs	 from	 them	

	
J.	 Zhang	 and	 B.	 Cheng,	 Model-‐based	 development	 of	 dynamically	 adapMve	 soBware,	 InternaMonal	
Conference	 on	 SoBware	 Engineering,	 ICSE	 2006	 	 	 	 	 	 	 	 	 	 	 	

gsm(x)

x

x x x

z

x

y

[i,x,y,z]

readData inputData

dataX

index

dataSource
x[i,x,y,z]

0

i

encodedData sendencode

0 network

1

i+1

shiftYdataYshiftX dataZ

gsm(x)

x

x x x x

z

x

y

inputData

dataX

dataSource
x[i,x,y,z]

0

i

encodedDataencode

0 network

1

i+1

shiftYdataYshiftX dataZ

Sender Source Model

index

x

x

x
readData

restrict

Sender Restricted Model (N)

Figure 10: Sender restricted source net

specified global invariants, an adaptive program should also
satisfy an adaptation integrity constraint : Once the adap-
tation starts, it should complete, i.e., the adaptation
should finally reach a state of the target program. Viola-
tions of this constraint result in an inconsistent state of the
program that is not designed for the target domain, and we
have no means to ensure its correctness.

The example shown in Figures 8, 9, and 10 is, in fact, an
entire model with overlap adaptation. After the sender has
adapted to the target domain, the receiver still remains in
its source domain. The adaptation starts when the sender
adapt transition is fired, and ends when the receiver adapt
transition is fired. The adaptation of the sender and the
receiver has a cause-effect relationship: The receiver’s adap-
tive transition is triggered by a packet sent by the adapted
sender. By composing the sender and the receiver adapta-
tion as an overlap adaptation, we are able to specify the
following two additional constraints:

• GSM example loss-tolerance global invariant:
The adaptive program should tolerate 2-packet loss
throughout its execution. In LTL,

(!lossCount <= 2) → (!¬lose(x))

We used model checking to verify this property successfully.

• GSM example adaptation integrity constraint:
If the sender adaptive transition is fired, then the re-
ceivers’s adaptive transition will also eventually be fired.
In LTL,

!(senderAdapted → ♦receiverAdapted)

We found errors when model checking the adaptation in-
tegrity constraint. By inspecting the counter example, we
realized that in a rare case, if all the packets after the
sender’s adaptation are lost, then the receiver will not re-
ceive any packet encoded by the target sender, and thus the
receiver will not adapt. We revised the model by using a re-
liable communication channel to send the first packet after
sender adaptation, so that the receiver will be guaranteed

to receive the packet. Note that it is generally possible to
build a reliable communication channel on top of unreliable
underlying infrastructure by using acknowledgement-based
protocols. Using it to send audio-stream would incur a per-
formance penalty. However, the penalty is negligible, if we
use it to send only critical packets occasionally. We reran the
model checking for the revised model against the adaptation
integrity constraint and the result showed that the adapta-
tion indeed runs to completion with the revised model.

4.4 Discussion
As described in Section 3, depending on the perspective

and the level of abstraction in which the developers are inter-
ested, a source program, a target program, or an adaptation
set may be adaptive itself. The above specification technique
may be applied recursively to specify the internal structure
of a program or an adaptation set. For the GSM-oriented
protocol example, we may apply guided adaptation for the
sender and one-point adaptation for the receiver, resulting
in a more complex adaptation scenario.

For a general adaptive program with multiple programs
and adaptation sets, we first divide the program into a num-
ber of simple adaptive programs, then specify each simple
adaptive program individually. In our approach, we ver-
ify the global invariants for each simple adaptive program.
We expect the global invariants to hold for all executions,
including those with multiple occurrences of adaptations.
We can prove that this is the case for all point safety and
point liveness LTL formulae and their propositional compo-
sitions [24]. A point safety formula has the form !¬η where
η is a point formula [25], i.e., a formula without temporal op-
erators. A point liveness formula has the form !(α → ♦β),
where both α and β are point formulae. The global in-
variants discussed in this paper are all point liveness, point
safety properties, or their propositional compositions.

5. REIFYING THE MODELS
An adaptive model is an abstraction of an adaptive pro-

gram in the sense that a model is a projection of the pro-
gram behavior on an interesting alphabet (i.e., transitions);
it represents a partial view of a program in which we are in-
terested. We explain this idea with the GSM-oriented audio
streaming example. From the models we have built, we can
identify four different programs (Figure 11): the source and
the target programs PS and PT , and two intermediate pro-
grams P1 and P2. The model in Figure 8 describes the adapt
sender adaptation projected onto the sender. The model in
Figure 9 describes the adapt receiver adaptation projected
onto the receiver. The model in Figure 10 describes the
restrict sender adaptation projected onto the sender.

!"#$%&'
!&()&$

!"#$%&'
$&%&*+&$

$&!,$*%,&)'
!&()&$

!"#$%&'
$&%&*+&$

,-$.&,'
!&()&$

!"#$%&'
$&%&*+&$

,-$.&,'
!&()&$

,-$.&,'
$&%&*+&$

$&!,$*%,'
!&()&$

-)-/,
!&()&$

-)-/,
$&%&*+&$

TP1P 2PSP

Figure 11: An adaptive program state machine

This section introduces Step (6), the approach to generate
executable prototypes and develop code based on the models
constructed in the previous section with the assistance of the
Renew tool suite [16].

377

Formal	 methods	 for	 self-‐adapMve	 systems	 	
Epifani	 et	 al.	 2006	 	

	
•  ProbabilisMc	 model	

represents	 reliability	 of	
execuMon	 flows	 of	 system	

•  ProbabiliMes	 are	
dynamically	 updated	
based	 on	 observaMons	

•  Formal	 model	 of	 system	
behavior	 at	 runMme:	 focus	
on	 K	 of	 MAPE-‐K	

	
I.	 Epifani,	 C.	 Ghezzi,	 R.	 Mirandola,	 and	 G.	 Tamburrelli.	 2009.	 Model	 evoluMon	 by	 run-‐Mme	 parameter	
adaptaMon,	 InternaMonal	 Conference	 on	 SoBware	 Engineering,	 ICSE	 2009	 	 	 	 	 	 	 	 	 	 	 	

confidence in it. It is important to notice that, in KAMI, it is
not strictly necessary to model the whole system, but only
the sub-parts that are considered as critical.

Modeling

Initial

Estimates

Implementation

Bayesian

Estimation

Refined Estimates

Runtime

Data

QoS

Requirements

Figure 1. Methodology Scheme

A crucial factor of KAMI is the mechanism adopted to
transform run-time data extracted by running instances of
the implemented system into estimates of model parame-
ters. KAMI performs this task by exploiting Bayesian Es-
timation Theory [6]. An informal explanation that justifies
this approach is given in Section 5.1.

Summing up, let us consider again the example of a com-
ponent based system modeled with a QN. When the system
has been completely developed, tested, and deployed it is
possible to collect data from its running instances. We can
measure, for example, the customer interarrival time (CIT)
and through the Bayesian estimation we can estimate its dis-
tribution (CITD). Consequently, the QN model is updated
and checked at run time against the desired requirements.

3. A Running Example

This section illustrates a running example, which deals
with Web-service compositions, used in this paper to illus-
trate the KAMI approach. Web-service compositions (and
SOAs in general [28]) make an excellent case for the need
of keeping models alive at run time. A Web-service compo-
sition is an orchestration of Web services aimed at building
a new service by exploiting a set of existing ones. The or-
chestration is performed through a workflow language, such
as BPEL [1, 10], a de-facto standard. BPEL instances co-
ordinate services that are typically managed by external or-
ganizations, other than the owner of the service composi-
tion. This distributed ownership implies that the final func-
tional and non-functional properties of the composed ser-
vice rely on behaviors of third-party partners that influence
the obtained results. At design time, a model can be used

to guarantee that the QoS of a composite service satisfies
the requirements, based on the hypothesized QoS of each
composed external service. However, design-time verifica-
tion does not suffice. The declared QoS of composed ser-
vices may turn out not to be met in practice. In addition,
because of the decentralized nature of services and of mul-
tiple ownership, external services may undergo independent
and unanticipated changes, which may lead to violating the
global QoS requirements.

The running example we use in the paper is based on a
case study, illustrated in [3], which deals with a distributed
system for medical assistance. The application, called Tele-
Assistance (TA), consists in a BPEL process for remote
assistance of patients. Figure 2 illustrates the application,
in which a server runs the TA composite service. The de-
scription is provided graphically. A summary of BPEL con-
structs and the graphical notation we use to describe them
are summarized in the Appendix.

The process starts as soon as a Patient (PA) enables the
home device supplied by TA, which sends a message to
the process’ receive activity startAssistance. Then, it en-
ters an infinite loop: every iteration is a pick activity that
suspends the execution and waits for one of the following
three messages: (1) vitalParamsMsg, (2) pButtonMsg, or
(3) stopMsg. The first message contains the patient’s vital
parameters that are forwarded by the BPEL process to the
Medical Laboratory service (LAB) by invoking the opera-
tion analyzeData. The LAB is in charge of analyzing the
data and replies by sending a result value stored in a vari-
able analysisResult. A field of the variable contains a value
that can be: changeDrug, changeDoses or sendAlarm. The
latter message triggers the intervention of a First-Aid Squad
(FAS) composed of doctors, nurses, and paramedics, whose
task is to visit the patient at home in case of emergency. To
alert the squad, the TA process invokes the operation alarm
of the FAS. The message pButtonMsg caused by pressing
a panic button also generates an alarm sent to the FAS. Fi-
nally, the message stopMsg indicates that the patient may
decide to cancel the TA service.

4. Reliability Modeling via DTMCs

Different models may be used to reason about different
non-functional properties of a software architecture. All
such models require that certain parameters characterizing
the final running system should be specified. Although
the KAMI methodology and its prototype implementation
apply to any probabilistic non-functional quality attribute,
hereafter we focus on reliability [21, 20] and on models
based on DTMCs. KAMI also supports performance analy-
sis via QNs. Run-time adaptation of QN parameters can be
performed by applying the same statistical machinery we il-
lustrate for DTMCs. The next section introduces DTMCs.

3

Formal	 methods	 for	 self-‐adapMve	 systems	 	
Calinescu	 et	 al.	 2011	

	
R.	 Calinescu,	 L.	 Grunske,	 M.	 Kwiatkowska,	 R.	 Mirandola,	 and	 G.	 Tamburrelli.	
Dynamic	 QoS	 Management	 and	 OpMmizaMon	 in	 Service-‐Based	 Systems,	
IEEE	 TransacMons	 on	 SoBware	 Engineering,	 TSE	 2011	 	 	 	 	 	 	 	 	 	 	 	

	
•  ProbabilisMc	 model	 of	 reliability	

and	 performance	 properMes	 of	
service-‐based	 system	 	

•  Requirements	 specified	 in	
probabilisMc	 computaMon	 tree	
logic	

•  Online	 verificaMon	 of	 properMes	
using	 Prism	

•  AdaptaMon	 of	 workflow	 engine	 	
(service	 selecMon	 +	 resources)	 	

•  AdaptaMon	 logic	 consists	 of	 set	 of	
tools	 that	 are	 glued	 together	 	

Formal	 methods	 for	 self-‐adapMve	 systems	 	
Ghezzy	 et	 al.	 2013	 	

	
•  Annotated	 UML	 diagram	 models	

response	 Mme,	 energy	 consumpMon	
and	 usability	 of	 different	 execuMon	
paths	 of	 the	 system	

•  Diagram	 is	 automaMcally	 translated	
to	 Markov	 decision	 process	 using	
Prism	

•  Interpreter	 guides	 the	 execuMon	 of	
the	 system	 using	 the	 model	 	

•  CumulaMve	 reward	 is	 used	 to	 select	
path	 with	 highest	 uMlity	

•  AdaptaMon	 logic	 is	 encoded	 in	 ad-‐
hoc	 interpreter	 	

	
C.	 Ghezzi,	 L.S.	 Pinto,	 P.	 SpoleMni,	 G.	 Tamburrelli:	 Managing	 non-‐funcMonal	 uncertainty	 via	 model-‐driven	
adapMvity,	 InternaMonal	 Conference	 on	 SoBware	 Engineering,	 ICSE	 2013	 	 	 	 	 	 	 	 	 	 	 	

!!"#$%&'()
*%%+',

-. -/

001
001

2()343)5 67#

(a) Alternative Implementations.

!!"#$%&'()**
+!"#$%&'()*+"
,$-#$)*%.

/) /-

001
001

2%34543+ 678

(b) Optional Functionality.

!

"#
$%&
%$'

(
)
*

!+,-./0.12#3445

%

445""#$%&'()*++
,+,0.#67812',
-./,0.12#3

91

9/

(c) Composition of MDPs.

!

"

#$%&'(")
*%+
,%+

+'

-. / 0

#$%'(1)
*%2
,%+

#$%'(3)
*%2
,%+

#$%'(")
*%+
,%+

#$%'(1)
*%+
,%+

#$%'(4)
*%2
,%+

#$%2)
*%"
,%+

4 5

#$%'(1)
*%2
,%+

67

68

9

#$%'(1)
*%2
,%+

#$%'(3)
*%2
,%+

'(1

'(!

17

+2

:8

; +"

#$%')
*%+
,%'

+ 27
'(-

'("

37

38

#$%')
*%+
,%'

<

#$%')
*%+
,%'

#$%')
*%+
,%'

= ++

#$%')
*%2
,%+

(d) ShopReview Embedded Model.

Fig. 3. Translation Process.

responds to the automaticProductLookup implementation (see

Listing 1), is annotated with its impact in terms of response

time (i.e., 0.5s), energy consumption (i.e., 2), and usability

(i.e., 1). Since symbolic state are artificially generated by the

translation process they are annotated with neutral values:

RT = 0, E = 0, U = 0. Notice that, by construction, the

obtained EM represents all the possible execution flows of the

system in terms of target implementations. Indeed, starting

from its initial state, the MDP has multiple alternative paths

towards the final state. The translation process performed by

the Generator hides the complexity of MDPs to developers.

A formal description of the automatic translation algorithm is

not given here for space reasons. It is based on the automatic

translation of an annotated Activity Diagram into a Markov

process that was presented in our previous work (i.e., [13]).

C. Model Manipulation

The annotations attached to the states of the EM represent

the impact of the corresponding implementation on quality

metrics. Formally, this information corresponds to rewards
in the MDP formalisms (see the Appendix). It can be used

to compute the minimum and maximum cumulative rewards

(indicated as minR(s) and maxR(s)) from each state s to the

final state in the model and for each quality metric. The com-

putation of such cumulative rewards may be arbitrarily com-

plex because of three characteristics of the model: (1) loops,

(2) probabilities attached to transitions, (3) a large number of

alternative paths. We rely on a probabilistic model checker,

such as PRISM [14], to compute them. Given these premises,

we manipulate the model by replacing impact numbers at-

tached to each state s with an interval �minR(s),maxR(s)�
for every requirement metric of the system. It is important to

notice that such intervals represent forecasts of the impacts

necessary to complete the execution (i.e., reach the final state)

starting from a specific state s of the model. At execution

time, such values are used by the Interpreter to select the most

appropriate path towards the final state, as illustrated in Section

III-D. Figure 4 illustrates the cumulative rewards obtained by

exploiting PRISM for some states of the EM. Notice that,

when cumulative rewards are computed for response time,

all the states characterized by user interaction (i.e., whose

corresponding implementations are annotated with @UI) are

considered as final states of the EM together with the original

final states. Indeed, the requirements concerning response time

(e.g., R1) predicate over the portions of the system in which

the computation occurs autonomously, i.e., without user input.

!"

!#

$%%%

&'()*%+,-.%./
0()1,-+/
2()3,-4/

&'()*%5,-.%3/
0()1,-+/
2()3,-4/

6

&'()*,-*%5/
0()3,-4/
2().,-3/

%%%

Fig. 4. Model Execution Example.

Manipulating the SR Model. At this stage, we manipulate

each state s of the model in Figure 3(d) by replacing impact

numbers with intervals in the form �minR(s),maxR(s)�, for

every requirement metric, obtained by running the probabilis-

tic model checker, as explained above. For example, let us

focus on state 6a and usability. In this case the model checker

yields the following values: �4; 6�. These values indicate that

an execution reaching state 6a will have an additional usability

impact value in the interval �4; 6� to reach the final state.

Similarly, for the response time and energy consumption we

obtain �2.9; 4.1� and �8; 11�, respectively.

37

!"#"$%&"'
()*+,-./#/.0+!/12'134 53&$"3"6.1./%64

!!!!!!!!!!!
!!!!!!!!!!!
!!!!!!!!!!!

"#$#%&'#(

)$*+,#(

#-#./'#(

/(#(

&$$+'&'#(0#()"$(

/(#(

738"99"9+)%9"$

::::: :
56."'&'"."'

;<5=)

/(#(

>"6"'1.%'

Fig. 1. The ADAM Approach.

automaton, called Embedded Model (EM). In the EM, each

state represents an implementation of an abstract functionality

of the system, while paths represent all the possible execution

flows. The Interpreter is, instead, in charge of executing the

system by navigating the automaton state-by-state and by

invoking the chosen target implementations associated to the

states it traverses. In particular, it is responsible for driving and

adapting the execution by choosing among alternative paths

of the automaton in order to maximize the system’s ability

to meet its non-functional requirements. By this we mean

that the Interpreter first measures the effects of non-functional

uncertainty (e.g., the response time of invoked functionalities)

and consequently chooses the most convenient path in the

EM to maximize the likelihood of meeting all the system’s

requirements. This way, if the Interpreter detects that the

current execution is slower w.r.t. a certain performance re-

quirement, it may autonomously decide to drive the execution

by choosing a specific (fast) path in the EM that guarantees the

compliance with the performance requirement. The approach

comprises the following steps: (1) Modeling, (2) Transforma-

tion, (3) Model Manipulation, and (4) Execution. Hereafter,

we describe each of them in detail. For each step, we also

illustrate it referring to the SR example.

A. Modeling

As previously introduced, the system is initially conceived

in terms of abstract functionalities and modeled by one or more

UML Activity Diagrams, which organize them in workflows.

For each abstract functionality, engineers also provide one or

more corresponding alternative target implementations. The

design methodology to derive the set of target concrete func-

tionalities for each abstract one, given the overall requirements

and an uncertainty mitigation policy, is out of scope of the

present paper. We observe, however, that designing systems

in terms of alternative implementations corresponds to an

approach already used for complex software systems, even

if informally. For example, in mobile applications, the user

location is typically obtained by relying on two alternatives:

(1) the GPS sensor or (2) the NPS. Clearly, every abstract

functionality needs at least one corresponding implementation.

In addition, while modeling, engineers are allowed to annotate

a subset of the abstract functionalities as Optional. Usually,

optional functionalities are not essential for the correctness of

!"#

$!"#$%&%"
'()*+,+&+%- %!".-/*&"#0+(1

&!"#0%2*(&"
3%%4*/

'!"516"7180($ (!"3%(89"
7180($

%%!"#*69+,$"
#0+(1

))*+,-./0122
%!!":1,*9&
;0210+-<

#!"3%(89"
:1(%<-+&+%-

3!":1=%&1"
:1(%<-+&+%-

450678,.9.:86;

))*+,-./0122
<!"71(%-280>"
516"7180($

!"= !"3
,>8? @016?

=!"3%(8&+%-

4>?:.A/-B?C;

!"(
,>8?@016?

%#!"7$%?@8/

%$!"A#7

3%(8&+%-
BA#7"'9&10-8&+C1D

Fig. 2. ShopReview UML Activity Diagram.

the final result, but may, however, affect usability. If necessary,

they are sacrificed to accomplish more important goals. As

illustrated in the example, each non-functional requirement

predicates over a certain non-functional metric. As a conse-

quence, each implementation is annotated with the impact it

has w.r.t. these metrics. For example, an implementation of

an abstract functionality with an expected response time of

2 seconds is annotated with responseTime=2s. Concrete

implementations that require user interaction cannot be an-

notated with an impact on response time, since they depend

on the user’s think time. They are therefore annotated with

@UI, whose meaning will become clear later on. Notice that

the annotation process occurs for each requirement metric on

all the implementations. Finally, ADAM requires engineers to

annotate each branch of decision nodes in the UML Activity

Diagram with the expected probability that an execution of the

system may take that branch. When not specified, branches are

considered to have the same probability.

Modeling the SR Application. The modeling step applied to

the SR example may produce the Activity Diagram illustrated

in Figure 2. For each abstract functionality, one or more con-

crete implementations are provided. For instance, concerning

ProductLookup, which translates a barcode into a product

name, SR relies on a remote service (e.g., searchupc.com) as

one of the possible implementations. Alternatively, the appli-

cation may ask the user to directly provide the product’s name.

As for searching the Web for more convenient prices, SR

relies on a primary remote service (e.g., shopzilla.com) and on

complementary services, represented by the abstract function-

alities WebSearch and SecondaryWebSearch, respectively. Note

that the SecondaryWebSearch is annotated as an Optional

functionality to represent the fact that it may be omitted at run-

time, if necessary. Similarly, the ResultOrdering functionality,

which sorts the results of WebSearch and LocalSearch by price

and distance, respectively, has been annotated as optional.

Concrete implementations are provided by Java methods

using the ad-hoc annotation @Implementation to refer to

the abstract functionality they implement. Moreover, the anno-

tation @Impact is used to specify the impact the implemen-

35

!!"#$%&'()
*%%+',

-. -/

001
001

2()343)5 67#

(a) Alternative Implementations.

!!"#$%&'()**
+!"#$%&'()*+"
,$-#$)*%.

/) /-

001
001

2%34543+ 678

(b) Optional Functionality.

!

"#
$%&
%$'

(
)
*

!+,-./0.12#3445

%

445""#$%&'()*++
,+,0.#67812',
-./,0.12#3

91

9/

(c) Composition of MDPs.

!

"

#$%&'(")
*%+
,%+

+'

-. / 0

#$%'(1)
*%2
,%+

#$%'(3)
*%2
,%+

#$%'(")
*%+
,%+

#$%'(1)
*%+
,%+

#$%'(4)
*%2
,%+

#$%2)
*%"
,%+

4 5

#$%'(1)
*%2
,%+

67

68

9

#$%'(1)
*%2
,%+

#$%'(3)
*%2
,%+

'(1

'(!

17

+2

:8

; +"

#$%')
*%+
,%'

+ 27
'(-

'("

37

38

#$%')
*%+
,%'

<

#$%')
*%+
,%'

#$%')
*%+
,%'

= ++

#$%')
*%2
,%+

(d) ShopReview Embedded Model.

Fig. 3. Translation Process.

responds to the automaticProductLookup implementation (see

Listing 1), is annotated with its impact in terms of response

time (i.e., 0.5s), energy consumption (i.e., 2), and usability

(i.e., 1). Since symbolic state are artificially generated by the

translation process they are annotated with neutral values:

RT = 0, E = 0, U = 0. Notice that, by construction, the

obtained EM represents all the possible execution flows of the

system in terms of target implementations. Indeed, starting

from its initial state, the MDP has multiple alternative paths

towards the final state. The translation process performed by

the Generator hides the complexity of MDPs to developers.

A formal description of the automatic translation algorithm is

not given here for space reasons. It is based on the automatic

translation of an annotated Activity Diagram into a Markov

process that was presented in our previous work (i.e., [13]).

C. Model Manipulation

The annotations attached to the states of the EM represent

the impact of the corresponding implementation on quality

metrics. Formally, this information corresponds to rewards
in the MDP formalisms (see the Appendix). It can be used

to compute the minimum and maximum cumulative rewards

(indicated as minR(s) and maxR(s)) from each state s to the

final state in the model and for each quality metric. The com-

putation of such cumulative rewards may be arbitrarily com-

plex because of three characteristics of the model: (1) loops,

(2) probabilities attached to transitions, (3) a large number of

alternative paths. We rely on a probabilistic model checker,

such as PRISM [14], to compute them. Given these premises,

we manipulate the model by replacing impact numbers at-

tached to each state s with an interval �minR(s),maxR(s)�
for every requirement metric of the system. It is important to

notice that such intervals represent forecasts of the impacts

necessary to complete the execution (i.e., reach the final state)

starting from a specific state s of the model. At execution

time, such values are used by the Interpreter to select the most

appropriate path towards the final state, as illustrated in Section

III-D. Figure 4 illustrates the cumulative rewards obtained by

exploiting PRISM for some states of the EM. Notice that,

when cumulative rewards are computed for response time,

all the states characterized by user interaction (i.e., whose

corresponding implementations are annotated with @UI) are

considered as final states of the EM together with the original

final states. Indeed, the requirements concerning response time

(e.g., R1) predicate over the portions of the system in which

the computation occurs autonomously, i.e., without user input.

!"

!#

$%%%

&'()*%+,-.%./
0()1,-+/
2()3,-4/

&'()*%5,-.%3/
0()1,-+/
2()3,-4/

6

&'()*,-*%5/
0()3,-4/
2().,-3/

%%%

Fig. 4. Model Execution Example.

Manipulating the SR Model. At this stage, we manipulate

each state s of the model in Figure 3(d) by replacing impact

numbers with intervals in the form �minR(s),maxR(s)�, for

every requirement metric, obtained by running the probabilis-

tic model checker, as explained above. For example, let us

focus on state 6a and usability. In this case the model checker

yields the following values: �4; 6�. These values indicate that

an execution reaching state 6a will have an additional usability

impact value in the interval �4; 6� to reach the final state.

Similarly, for the response time and energy consumption we

obtain �2.9; 4.1� and �8; 11�, respectively.

37

Summary	 SOTA	

•  Increasing	 a8enMon	 for	 formal	 models	 at	
runMme	 to	 provide	 guarantees	 of	 adaptaMon	 	

•  ProbabilisMc	 approaches	 dominate	 	
•  Focus	 on	 formal	 models	 of	 system,	
environment	 and	 goals	 (K	 of	 MAPE-‐K)	

•  No	 systemaMc	 formalizaMon	 and	 verificaMon	 of	
of	 adaptaMon	 funcMons	 (MAPE	 of	 MAPE-‐K)	

•  Limited	 support	 for	 unpredicted	 changes	

Overview	

•  Architecture-‐based	 self-‐adaptaMon	 vs.	 control-‐
based	 self-‐adaptaMon	

•  Reference	 approaches	 for	 architecture-‐based	
self-‐adaptaMon	

•  Formal	 methods	 for	 self-‐adapMve	 systems	
•  AcMve	 formal	 methods	 for	 self-‐adaptaMon	
•  Wrap	 up	

StarMng	 points	 	

•  Formalize	 adaptaMon	 funcMons	 to	 provide	
guarantees	 about	 adaptaMon	 capabiliMes	
– E.g.,	 does	 analysis	 detect	 errors	 correctly?	 	
– Are	 adaptaMons	 performed	 in	 order	 of	 selected	
plan?	 	

•  Support	 unanMcipated	 changes	
– Requires	 support	 for	 adaptaMons	 of	 adaptaMon	
funcMons	

AcMvFORMS	
AcMve	 formal	 models	 for	 self-‐adaptaMon	

•  Formal	 model	 of	 complete	 MAPE-‐K	 loop	
•  Model	 is	 directly	 executed	 to	 adapt	 the	
managed	 system	

•  Model	 directly	 supports	 online	 verificaMon	 of	
goal	 saMsfacMon/violaMon	

•  Model	 can	 be	 adapted	 at	 runMme	 to	 support	
unanMcipated	 changes	 	 	

h8p://homepage.lnu.se/staff/daweaa/AcMvFORMS.htm	 (from	 October	 15,	 2013)	

Focus	

•  3	 layered	 model	 of	 Kramer	 &	 Magee	 	
–  Component	 control	 (layer	 1),	 change	 management	 (2),	
goal	 management	 (3)	

•  Focus	 on	 layer	 2	 and	 3	
– AssumpMon:	 managed	 system	 is	 equipped	 with	
required	 sensors	 and	 effectors	 	

–  InstrumentaMon	 of	 managed	 system	 is	 research	
subject	 in	 its	 own	 right	

•  Case	 study:	 logisMc	 mulM-‐robot	 system	

!"#$%&'(")*+,-.,"$"/*0%+1(/$+/!%$*("*%$2.,"2$*/,*"$3*
2/0/$2* %$.,%/$#* 4'* /10/* &0'$%* ,%* ("* %$2.,"2$* /,* "$3*
,45$+/(6$2* %$7!(%$#*,8* /1$* 2'2/$-* ("/%,#!+$#* 8%,-* /1$*
&0'$%*04,6$9*:1(2*&0'$%*+0"*("/%,#!+$*"$3*+,-.,"$"/2;*
%$+%$0/$* 80(&$#* +,-.,"$"/2;* +10")$* +,-.,"$"/*
("/$%+,""$+/(,"2* 0"#* +10")$* +,-.,"$"/* ,.$%0/(")*
.0%0-$/$%29* </* +,"2(2/2* ,8* 0* 2$/* ,8* .&0"2* 31(+1* 0%$*
0+/(60/$#*("*%$2.,"2$*/,*+10")$2*,8*/1$*,.$%0/(")*2/0/$*
,8* /1$* !"#$%&'(")* 2'2/$-9* =,%* $>0-.&$?* 31$"* 0*
+,-.,"$"/* 80(&2?* +10")$* -0"0)$-$"/* +0"* 88+/* 0*
%$.0(%*$(/1$%*4'*+10")(")*+,-.,"$"/*+,""$+/(,"2*,%*4'*
+%$0/(")* "$3* +,-.,"$"/29* <"* %,4,/(+* 2'2/$-2?* /1(2*
&0'$%*102*4$$"*(-.&$-$"/$#*("*0*"!-4$%*,8*30'2*8%,-*
+,"#(/(,"0&* 2$7!$"+(")* 2'2/$-2* @ABC* /,* 2$/2* ,8* 2/0/$*
-0+1("$29*D,%E* ("* /1$*"$/3,%E*-0"0)$-$"/*0%$0*102*
.%,#!+$#* &0")!0)$2* 2!+1* 02* F,"#$%* @AGC* 31(+1*
.$%8,%-*0*2(-(&0%*8!"+/(,"*/,*/1$*.&0""(")*&0")!0)$2*("*
/1$*+,"/$>/*,8*2'2/$-29*F,"#$%*(2*22"/(0&&'*0*&0")!0)$*
31(+1* $>$+!/$* 0+/(,"2* ("* %$2.,"2$* /,* %$+,)"(2(")*
H.,22(4&$*+,-.&$>I*6"/29*:1$*$22$"/(0&*+10%0+/$%(2/(+*
,8*/1(2*+10")$*-0"0)$-$"/*&0'$%*(2*/10/*(/*+,"2(2/2*,8*0*
2$/* ,8* .%$J2.$+(8($#* .&0"2* 31(+1* 0%$* 0+/(60/$#* ("*
%$2.,"2$* /,* 2/0/$* +10")$* 8%,-* /1$* 2'2/$-*4$&,39*:1$*
&0'$%* +0"* %$2.,"#* 7!(+E&'* /,* "$3* 2(/!0/(,"2* 4'*
$>$+!/(")*310/*0%$*("*$22$"+$*.%$J+,-.!/$#*.&0"29*<8*0*
2(/!0/(,"* (2* %$.,%/$#* 8,%* 31(+1* 0* .&0"* #,$2* ",/* $>(2/*
/1$"* /1(2* &0'$%*-!2/* ("6,E$* /1$* 2$%6(+$2*,8* /1$*1()1$%*
.&0""(")*&0'$%9*<"*0##(/(,"?*"$3*),0&2*8,%*0*2'2/$-*3(&&*
("6,&6$*"$3*.&0"2*4$(")*("/%,#!+$#*("/,*/1(2*&0'$%9**

!"#!$%&'()&*&+,-,*.(
:1$*!..$%-,2/*&0'$%*,8*K0/L2*/1%$$*&0'$%*0%+1(/$+/!%$*(2*
/1$* #$&(4$%0/(,"* &0'$%9* :1(2* &0'$%* +,"2(2/2* ,8* /(-$*
+,"2!-(")*+,-.!/0/(,"2*2!+1*02*.&0""(")*31(+1*/0E$2*
/1$* +!%%$"/* 2/0/$* 0"#* 0* 2.$+(8(+0/(,"* ,8* 0* 1()1J&6&*
),0&* 0"#* 0//$-./2* /,* .%,#!+$* 0* .&0"* /,* 0+1(6* /10/*
),0&9* M"* $>0-.&$* ("* %,4,/(+2* 3,!&#* 4$*)(6$"* /1$*
+!%%$"/* .,2(/(,"* ,8* 0* %,4,/* 0"#* 0* -0.* ,8* (/2*
$"6(%,"-$"/*.%,#!+$*0*%,!/$*.&0"*8,%*$>$+!/(,"*4'*/1$*
2$7!$"+(")*&0'$%9*N10")$2*("*/1$*$"6(%,"-$"/?*2!+1*02*
,42/0+&$2* /10/* 0%$* ",/* ("* /1$* -0.?* 3(&&* ("6,&6$* %$J
.&0""(")9* :1$* %,&$* ,8* /1$* $7!(60&$"/* &0'$%* ("* 0* 2$&8J
-0"0)$#* 2'2/$-* (2* K,0&* O0"0)$-$"/9* :1(2* &0'$%*
.%,#!+$2* +10")$* -0"0)$-$"/* .&0"2* ("* %$2.,"2$* /,*
%$7!$2/2* 8%,-* /1$* &0'$%* 4$&,3* 0"#* ("* %$2.,"2$* /,* /1$*
("/%,#!+/(,"*,8*"$3*),0&29*=,%*$>0-.&$?* (8* /1$*),0&* ("*
/,*-0("/0("* 2,-$* 0%+1(/$+/!%0&* .%,.$%/'* 2!+1* 02* /%(.&$*
%$#!"#0"+'* 8,%* 0&&* 2$%6$%2?* /1(2* &0'$%* +,!&#* 4$*
%$2.,"2(4&$* 8,%* 8("#(")* /1$* %$2,!%+$2* ,"* 31(+1* /,*
+%$0/$* "$3* +,-.,"$"/2* 08/$%* 80(&!%$* 0"#* .%,#!+(")* 0*
.&0"* 02* 1,3* /,* +%$0/$* 0"#* ("/$)%0/$* /1$2$* "$3*
+,-.,"$"/2* /,* /1$*+10")$*-0"0)$-$"/*&0'$%9*</*+,!&#*
4$* %$2.,"2(4&$* 8,%* #$+(#(")* /1$* ,./(-0&* .&0+$-$"/* ,8*
2$%6$%2* 8,%* &,0#* 40&0"+(")* .!%.,2$29* M2* 3$* 3(&&*

0##%$22* 8!%/1$%* ("* /1$* "$>/* 2$+/(,"* /1$%$* 0%$* -0"'*
%$2$0%+1* (22!$2*1$%$*02* /,*1,3* /,* %$.%2"/*1()1* &6&*
2'2/$-*),0&2?* 1,3* /,* 2'"/1$2(P$* +10")$*-0"0)$-$"/*
.&0"2* 8%,-* /1$2$*),0&2* 0"#* 1,3*)$"$%0&* ,%* #,-0("*
2.$+(8(+*/1(2*&0'$%*21,!&#*4$9*

=()!%$* A* 2!--0%(2$2* ,!%* .%,.,2$#* /1%$$* &0'$%*-,#$&*
8,%* 0* 2$&8* -0"0)$#* 2'2/$-* 8,&&,3(")* K0/L2* 3,%E* ,"*
0%+1(/$+/!%$2*8,%*%,4,/(+*2'2/$-29*:1$*.%("+(.0&*+%(/$%(0*
8,%* .&0+(")* 8!"+/(,"* ("* #(88$%$"/* &0'$%2* ("* K0/L2*
0%+1(/$+/!%$*(2*,"$*,8*/(-$*2+0&$*0"#*/1(2*3,!&#*2$$-*/,*
0..&'*$7!0&&'*3$&&*/,*2$&8*-0"0)$#*2'2/$-29*<--$#(0/$*
8$$#40+E*0+/(,"2*0%$*0/*/1$*&,3$2/*&$6$&*0"#*/1$*&,")$2/*
0+/(,"2* %$7!(%(")* #$&(4$%0/(,"* 0%$* 0/* /1$* !..$%-,2/*
&6&9* D$* 3,!&#* $-.102(P$* /10/* 3$* #,* ",/* +,"2(#$%*
/1(2* 0"* (-.&$-$"/0/(,"* 0%+1(/$+/!%$* 4!/* %0/1$%* 0*
+,"+$./!0&* ,%* %$8$%$"+$* 0%+1(/$+/!%$* 31(+1* (#$"/(8($2*
/1$* "$+$220%'* 8!"+/(,"0&(/'* 8,%* 2$&8* -0"0)$-$"/9* D$*
3(&&* !2$* (/* ("* /1$* "$>/* 2$+/(,"* /,* ,%)0"(2$* 0"#* 8,+!2*
#(2+!22(,"* ,8* /1$* %$2$0%+1* +10&&$")$2* .%$2$"/* 4'* 2$&8*
-0"0)$-$"/9*

*

"#$%!
&$'$()*)'+

,-$'()!
&$'$()*)'+

,#*.#')'+!
,#'+/#%

!"#"$%

&'#()*+,-"./(%

!" !#

$" $#

&'#()*+01#(%

01#(+2*3$*%"

%

%& %'
"#$%!
&$'$()*)'+

,-$'()!
&$'$()*)'+

,#*.#')'+!
,#'+/#%

!"#"$%

&'#()*+,-"./(%

!" !#

$" $#

&'#()*+01#(%

01#(+2*3$*%"

%

%& %'

*
/0+12,(3(4(562,,(7&8,2(92:60.,:.12,()%;,'(<%2(

(=,'<>)&*&+,-,*."(

(

#! ?,@,&2:6(A@@1,@(
<"* /1$* .%$6(,!2* 2$+/(,"* 3$* ,!/&("$#* 0* /1%$$* &0'$%*
0%+1(/$+/!%$* -,#$&* 31(+1* (2* ("/$"#$#* 02* 0* 8,%-* ,8*
%8%$"+$* -,#$&* %0/1$%* /10"* 02* 0*)!(#$* /,* 1,3* 2$&8*
-0"0)$#* 2,8/30%$* 21,!&#* 4$* (-.&$-$"/$#9* <"* /1(2*
2$+/(,"?*3$*!2$*/1$*-,#$&*/,*2/%!+/!%$*/1$*.%$2$"/0/(,"*
,8* /1$* %$2$0%+1* (22!$2* 3$* 2$$* .%2"/$#* 4'* /1$*
+10&&$")$* ,8* (-.&$-$"/(")* 2$&8J-0"0)$#* 2'2/$-29* :,*
)%,!"#* /1(2* #(2+!22(,"?* 3$* #%03* $>0-.&$2* 8%,-* /1$*
3,%E*3(/1*31(+1*3$* 0%$*-,2/* 80-(&(0%* Q* "0-$&'* ,!%*
,3"9*

#"3!B%-C%*,*.(B%*.2%'(7&8,2(
D$* 0%$* +,"+$%"$#* 3(/1* -0"0)$-$"/* 0/* /1$*
0%+1(/$+/!%0&* &$6$&* 31$%$* 3$* +,"2(#$%* 0* 2'2/$-* /,*

Case	 study	

Approach	

Approach	

•  AcMve	 model	 	
–  Is	 a	 formally	 verified	 model	 	
–  Realizes	 a	 MAPE-‐K	 loop	 	
–  To	 adapt	 the	 managed	 system	 	

•  Goal	 management	 	
– Monitors	 the	 acMve	 model	
–  Can	 adapt	 the	 acMve	 model	 (e.g.,	 to	 improve	 it	 or	 deal	 with	
a	 parMcular	 adaptaMon	 problem)	 	

•  Engineer/Admin	 	
–  Can	 monitor	 goal	 saMsfacMon/violaMon	
–  Can	 change	 the	 acMve	 model,	 verify	 and	 deploy	 it,	 to	
manage	 (new)	 goals	 using	 goal	 management	

RealizaMon	

Goal	 Management	 Interface	

Virtual	 machine	

•  Transforms	 a	 formal	 model	 (network	 of	 Mmed	
automata)	 into	 a	 graph	 representaMon	 	

•  Executes	 that	 model	 	
•  Can	 adapt	 the	 current	 model	 at	 runMme	
•  Can	 detect	 and	 noMfy	 goal	 violaMons	

Levels	 of	 adaptaMon	

•  Level	 1:	 acMve	 model	 adapts	 the	 managed	
system	
– Close	 temporally	 a	 lane	 in	 the	 warehouse	 for	
maintenance	 	 	

•  Level	 2:	 adapt	 the	 acMve	 model	 (adapt	 MAPE)	
– Add	 a	 new	 drop	 locaMon	 in	 the	 warehouse	

Level 1 adaptations
Close temporally a lane in the warehouse for maintenance

-‐	 Adapt	 the	 robot	 to	 prevent	 it	 from	
using	 a	 closed	 lane	 	

Level 1 adaptations
Close temporally a lane in the warehouse for maintenance

Level 2 adaptations
Add a new drop location in the warehouse

-‐	 Add	 new	 part	 of	 the	 map	 for	 the	 robot	
-‐	 Creates	 new	 deadlock	 situaMons	 when	
certain	 lanes	 are	 disabled	
-‐	 Requires	 adding	 new	 representaMon	 in	 K	
and	 adaptaMons	 of	 MAPE	 funcMons	

Level 2 adaptations
Deal with new deadlock threat (close additional lane): e.g., update planner

enableLane()

planningOngoing()

planned()

disableLane() && !waitRequired()

execute[RiD]!

planning[RiD]?

planEnabling() planDisabling()

planned()

planningOngoing()

disableLane()

&& !waitRequired()

laneDisabled()

&& posUpdated()

execute[RiD]!

enableLane()

remRequest()

&& !waitRequired()

addRequest()

planning[RiD]?

planEnabling()

planDisabling(),

lockExtraNode()

planAddition()

planRemoval()

lockExtraNode()

Level 2 adaptations
Add a new drop location in the warehouse

AcMvFORMS	 summary	

•  Formal	 acMve	 model	 guarantees	 verified	
properMes	 of	 the	 adapMon	 process	

•  AcMve	 model	 directly	 executes	 the	 adaptaMon:	
no	 coding,	 no	 model	 transformaMons	

•  AdaptaMon	 of	 adaptaMon	 funcMons:	
lightweight	 process	 to	 add	 new	 goals	 	

•  Online	 detecMon	 of	 goal	 violaMons	

Tradeoffs	

•  Expert	 knowledge	 to	 design	 and	 change	 the	
formal	 models	 	

•  Modeling	 is	 limited	 by	 the	 expressive	 power	 of	
the	 modeling	 language	 	

•  Language	 might	 not	 be	 appropriate	 to	 model	
adapMon	 logic	 for	 parMcular	 types	 of	 systems	 	 	

•  Possible	 performance	 overhead	 	

Paves	 the	 way	 for	 future	 research	

•  Domain	 specific	 design	 primiMves	 to	 support	
the	 designer	 	

•  Different	 modeling	 languages	 (e.g.	
probabilisMc	 automata	 to	 model	 domain)	 	

•  CoordinaMon	 between	 AcMve	 Models	 in	
decentralized	 se|ng	

•  AutomaMon	 goal	 management	 by	 learning	 	
•  Scalable	 runMme	 verificaMon	 	
	

	

Overview	

•  Architecture-‐based	 self-‐adaptaMon	 vs.	 control-‐
based	 self-‐adaptaMon	

•  Reference	 approaches	 for	 architecture-‐based	
self-‐adaptaMon	

•  Formal	 methods	 for	 self-‐adapMve	 systems	
•  AcMve	 formal	 methods	 for	 self-‐adaptaMon	
•  Wrap	 up	

Wrap	 up:	 Goals	 of	 this	 tutorial	

•  Understand	 the	 noMon	 of	 self-‐adaptaMon	 	
•  Get	 familiar	 with	 references	 approaches	 for	
architecture-‐based	 self-‐adaptaMon	

•  Get	 familiar	 with	 state	 of	 the	 art	 in	 formal	
methods	 for	 self-‐adapMve	 systems	 	

•  Understand	 the	 challenges	 in	 formal	 methods	
at	 runMme	 for	 self-‐adapMve	 systems	

Wrap	 up	
Understand	 the	 noMon	 of	 self-‐adaptaMon	

•  Self-‐adaptaMon	 is	 moMvated	 by	 the	 need	 to	 deal	 with	
design	 Mme	 uncertainMes	 	

•  Two	 key	 families	 are	 	
–  Control-‐based	 self-‐adaptaMon:	 controller	 design	 and	
analysis	 based	 on	 control	 theoreMc	 foundaMon	

–  Architecture-‐based	 self-‐adaptaMon:	 feedback	 loop	 reasons	
about	 self-‐model	 and	 adapts	 system	 when	 needed	 	 	

•  SeparaMon	 between	 managed	 and	 managing	 system	
–  Concerns	 of	 managed	 system	 are	 about	 the	 domain	 at	
hand	 	

–  Concerns	 of	 managing	 system	 are	 about	 system	

Wrap	 up	
Get	 familiar	 with	 reference	 approaches	 for	

architecture-‐based	 self-‐adaptaMon	

•  MAPE-‐K	 reference	 model	
– MAPE:	 primary	 funcMons	 to	 realize	 self-‐adaptaMon	
–  K:	 domain	 models	 	

•  Rainbow	 framework	 maps	 reference	 model	 to	
concrete	 architecture	 and	 implementaMon	

•  3	 layer	 model	 of	 Kramer	 and	 Magee	
–  Component	 control	 –	 adaptaMon	 management	 –	 goal	
management	 	

•  FORMS:	 rigorous	 specified	 model	 that	 integrates	
different	 perspecMves	 on	 self-‐adaptaMon	 	

Wrap	 up	
Get	 familiar	 with	 state	 of	 the	 art	 formal	

methods	 in	 self-‐adapMve	 systems	

•  VerificaMon	 at	 construcMon	 Mme	 to	 provide	
guarantees	 about	 system	 goals	

•  Model	 driven	 approaches	 to	 guarantee	
conformance	 between	 models	 and	
implementaMon	

•  Recent	 years	 a	 clear	 trend	 towards	 the	
applicaMon	 of	 formal	 methods	 at	 runMme	

•  DominaMng	 focus	 on	 probabilisMc	 models	 of	 the	
domain	

•  Main	 focus	 on	 “parametric	 uncertainty”	 (e.g.,	
reliability	 of	 services	 change	 over	 Mme)	

Wrap	 up	
Understand	 the	 challenges	 on	 formal	 methods	

at	 runMme	 for	 self-‐adapMve	 systems	

•  Guaranteeing	 domain	 goals	 under	 uncertainty	
is	 one	 part	 of	 assurances	 of	 self-‐adaptaMon	 	

•  Guaranteeing	 correct	 adaptaMon	 behavior	 is	
the	 other	 part	 (lack	 of	 a8enMon	 so	 far)	

•  Need	 for	 soluMons	 that	 deal	 with	 “structural	
uncertainty”	 	
–  i.e.,	 unanMcipated	 change;	 e.g.,	 change	 goals	 	

•  Scalable	 runMme	 verificaMon	

Bibliography	 	
•  B.	 Cheng	 et	 al.,	 SoBware	 Engineering	 for	 Self-‐AdapMve	 Systems:	 A	 Research	 Roadmap,	 Lecture	 Notes	 in	

Computer	 Science,	 vol.	 5525,	 2009	 	
•  P.	 Oreizy,	 M.	 Gorlick,	 R.	 Taylor,	 D.	 Heimbigner,	 G.	 Johnson,	 N.	 Medvidovic,	 A.	 Quilici,	 D.	 Rosenblum,	 and	 A.	

Wolf,	 An	 Architecture-‐Based	 Approach	 to	 Self-‐AdapMve	 SoBware,	 IEEE	 Intelligent	 Systems,	 May/June	 1999	
•  Kephart	 and	 Chess,	 The	 vision	 of	 autonomic	 CompuMng,	 IEEE	 Computer,	 January	 2003	
•  D.	 Garlan,	 S-‐W.	 Cheng,	 A.C.	 Huang,	 B.	 Schmerl,	 P.	 Steenkiste,	 Rainbow:	 Architecture-‐	 Based	 Self-‐

AdaptaMon	 with	 Reusable	 Infrastructure,	 IEEE	 Computer,	 October	 2004	 	 	 	 	 	 	 	 	 	 	 	
•  J.	 Kramer	 and	 J.	 Magee,	 Self-‐adaptaMon:	 an	 architecture	 challenge,	 Future	 of	 SoBware	 Engineering,	 FOSE	

2007	 	 	 	 	 	 	 	 	 	 	 	
•  D.	 Weyns,	 S.	 Malek,	 J.	 Andersson,	 	 FORMS:	 Formal	 reference	 model	 for	 self-‐adaptaMon,	 ACM	 TransacMons	

on	 Autonomous	 and	 AdapMve	 Systems,	 TAAS	 7(1),	 2012	 	 	 	 	 	 	 	 	 	 	 	
•  D.	 Weyns,	 R.	 Haesevoets,	 A.	 Helleboogh,	 T.	 Holvoet,	 W.	 Joosen,	 The	 MACODO	 Middleware	 for	 Context-‐

Driven	 Dynamic	 Agent	 OrganzaMons,	 ACM	 TransacMon	 on	 Autonomous	 and	 AdapMve	 Systems,	 5(1),	 2010.	
•  D.	 Weyns,	 U.	 IBikhar,	 D.	 Gil	 de	 la	 Iglesia,	 and	 T.	 Ahmad,	 A	 Survey	 on	 Formal	 Methods	 in	 Self-‐AdapMve	

Systems,	 FiBh	 InternaMonal	 C*	 Conference	 on	 Computer	 Science	 and	 SoBware	 Engineering	 2012	
•  J.	 Zhang	 and	 B.	 Cheng,	 Model-‐based	 development	 of	 dynamically	 adapMve	 soBware,	 InternaMonal	

Conference	 on	 SoBware	 Engineering,	 ICSE	 2006	 	 	 	 	 	 	 	 	 	 	 	
•  I.	 Epifani,	 C.	 Ghezzi,	 R.	 Mirandola,	 and	 G.	 Tamburrelli.	 2009.	 Model	 evoluMon	 by	 run-‐Mme	 parameter	

adaptaMon,	 InternaMonal	 Conference	 on	 SoBware	 Engineering,	 ICSE	 2009	 	 	 	 	 	 	 	 	 	 	 	
•  R.	 Calinescu,	 L.	 Grunske,	 M.	 Kwiatkowska,	 R.	 Mirandola,	 and	 G.	 Tamburrelli.	 Dynamic	 QoS	 Management	

and	 OpMmizaMon	 in	 Service-‐Based	 Systems,	 IEEE	 TransacMons	 on	 SoBware	 Engineering,	 TSE	 2011	 	 	 	 	 	 	 	 	 	 	 	
•  C.	 Ghezzi,	 L.S.	 Pinto,	 P.	 SpoleMni,	 G.	 Tamburrelli:	 Managing	 non-‐funcMonal	 uncertainty	 via	 model-‐driven	

adapMvity,	 InternaMonal	 Conference	 on	 SoBware	 Engineering,	 ICSE	 2013	 	 	 	 	 	 	 	 	 	 	 	
•  h8p://homepage.lnu.se/staff/daweaa/AcMvFORMS.htm	 (available	 from	 October	 15,	 2013)	

