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MoMvaMon	  

3	  

	  
• Engineering	  contemporary	  soBware	  systems	  is	  
complex	  due	  to	  uncertainMes	  at	  design	  Mme	  	  
•  Changing	  availability	  	  of	  resources	  	  
•  Faults	  that	  are	  difficult	  to	  predict	  	  
•  Changing	  or	  new	  user	  goals	  

• How	  to	  engineer	  such	  systems	  and	  guarantee	  
system	  goals	  regarding	  of	  the	  uncertainMes?	  	  	  

	  



Promise	  of	  self-‐adapMve	  systems*	  
	  
	  
Self-‐adapMve	  systems	  are	  able	  to	  adjust	  their	  behavior	  in	  
response	  to	  their	  percepMon	  of	  the	  environment	  and	  the	  
system	  itself	  
	  
to	  become	  more	  resilient,	  dependable,	  robust,	  energy-‐
efficient	  […]	  
	  
	  
*B.	  Cheng	  et	  al.,	  SoBware	  Engineering	  for	  Self-‐AdapMve	  Systems:	  A	  Research	  Roadmap,	  Lecture	  Notes	  in	  
Computer	  Science,	  vol.	  5525,	  2009	  	  	  	  	  	  	  	  	  	  	  	  



Promise	  of	  formal	  approaches	  for	  
self-‐adapMve	  systems*	  

	  
	  
Formal	  methods	  offer	  a	  means	  to	  	  
provide	  evidence	  that	  the	  system	  requirements	  are	  
saMsfied	  during	  operaMon	  
regarding	  the	  uncertainty	  of	  changes	  that	  may	  affect	  the	  
system,	  its	  environment	  or	  its	  goals	  
	  
	  
*SoBware	  Engineering	  for	  Self-‐AdapMve	  Systems:	  Assurances	   	   	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  www.dagstuhl.de/de/programm/kalender/semhp/?semnr=13511	  	  

	  



Goals	  of	  this	  tutorial	  

•  Understand	  the	  noMon	  of	  self-‐adaptaMon	  	  
•  Get	  familiar	  with	  references	  approaches	  for	  
architecture-‐based	  self-‐adaptaMon	  

•  Get	  familiar	  with	  state	  of	  the	  art	  in	  formal	  
methods	  for	  self-‐adapMve	  systems	  	  

•  Understand	  the	  challenges	  in	  formal	  methods	  
at	  runMme	  for	  self-‐adapMve	  systems	  



Overview	  

•  Architecture-‐based	  self-‐adaptaMon	  vs.	  control-‐
based	  self-‐adaptaMon	  

•  Reference	  approaches	  for	  architecture-‐based	  
self-‐adaptaMon	  

•  Formal	  methods	  for	  self-‐adapMve	  systems	  
•  AcMve	  formal	  methods	  for	  self-‐adaptaMon	  
•  Wrap	  up	  	  



Self-‐adaptaMon	  
	  
Architecture-‐based	  self-‐adaptaMon	  
	  
	  
	  

Control-‐based	  self-‐adaptaMon	  
	  

Target	  system	  Controller	  

disturbance	  input	  

reference	  
input	   output	  

Transducer	  

Managed	  system	  

Environment	  

Managing	  system	  

effect	  

adapt	  
monitor	  

control	  



Basic	  model	  control-‐based	  self-‐
adaptaMon	  
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Target	  system	  Controller	  

transduced	  output	  

disturbance	  input	  

reference	  input	   measured	  output	  

Transducer	  

control	  input	  

	  
Discrete	  )me	  dynamic	  system	  	  
	  	  	  x(k+1)	  =	  f(x(k),u(k),dx(k))	  
	  	  	  	  	  	  	  x:	  state;	  u:	  input;	  dx:	  state	  disturbances	  	  	  
	  	  	  y(k)	  =	  g(x(k),u(k),dy(k))	  	  
	  	  	  	  	  	  	  y:	  output;	  u:	  input;	  dy:	  output	  disturbances	  



Control-‐based	  	  	  	  
self-‐adaptaMon	  
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Classic controllers  
(Abdelzaher et al. 2003)	  

Decentralized	  control	  	  
(X.	  Wang	  et	  al.,	  2007;	  R.	  Wang	  et	  al	  2012)	  

Nested	  and	  layered	  architectures	  
(Zhu	  et	  al,	  2006;	  Kusic	  et	  al.	  2009)	  

CPU capacity) allocated to a class [16] or the fraction of net-
work link bandwidth allocated to a flow [17].

This section discussed the natural existence of actuators
in computing systems, which makes it possible to imple-
ment the “valves” that appear in Figure 1(b). Another impor-
tant cornerstone of applying feedback control to computing
systems is the existence of a natural translation from com-
mon QoS assurance problems into those of feedback con-
trol. This topic is covered in the next section.

QoS Mapping
A cornerstone of a control-theoretic paradigm for QoS guar-
antees in software systems lies in the ability to convert com-
mon resource management and software performance
assurance problems into feedback control problems. One
can think of each QoS control problem as having a corre-
sponding control-loop instantiation that describes how this
particular QoS control problem is solved using feedback
control. We call such an instantiation a control-loop tem-
plate. Here we describe control-loop templates for the main

QoS control problems such as absolute convergence
guarantees, performance isolation, statistical multiplexing,
prioritization, relative differentiated service guarantees,
and optimization guarantees. The fundamental building
block in these templates is one that implements the basic
(absolute) convergence guarantee. Interconnecting such
blocks can lead to formulating more complex guarantees
such as relative guarantees, prioritization, and optimization
as feedback control problems.

The Absolute Convergence Guarantee
Since it is impossible to achieve absolute guarantees in a
system where load and resources are not known a priori, we
define the absolute guarantee problem as one of conver-
gence to a specified performance. The statement of the
problem is to ensure that a performance metric, R, i) con-
verges within a specified exponentially decaying envelope
to a fixed value, Rdesired, and that ii) the maximum deviation
R Rdesired − is bounded at all times, as shown in Figure 2(a).

80 IEEE Control Systems Magazine June 2003

R

Rdes.

Specified Maximum Deviation

Actual Performance, R

Time

Specified Decay Envelope

(a)

Approximate
System Model

Performance
Error Correction

Performance
Set Point

Controller
Actuator

(Resource Allocator)

Resource
Allocation

Software
System

Actual
Performance

Performance
SensorMeasured

Performance

(b)

Approximate
System Model

Approximate
System Model

First-Class
Allocation

Controller

Controller

Unused
Capacity

Unused
Capacity

Correction

Admitted
First-Class Clients

Admitted
ClientsActuator

(Resource Allocator)

Actuator
(Resource Allocator)

Software
System

Software
System

Class
Resource
Consumption

Resource
Consumption

Resource
Consumption

Performance
Sensor

Performance
Sensor

Performance
Sensor

Performance
Sensor

Measured
Consumption of First-Class Clients

Measured
Consumption of First-Class Clients

Measured
Consumption of Second-Class Clients

Measured
Consumption of Second-Class Clients

Leftover
Capacity

Total
Leftover
Capacity

Leftover
Capacity

Unused
Capacity

Correction

Admitted
Second-Class Clients

Controller

Controller

Actuator
(Resource Allocator)

Actuator
(Resource Allocator)

Software
System

Software
System

Class
Resource
Consumption

Virtual-Estate
Allocation

mi

mb

Best-Effort
Allocation

Admitted Best-Effort
Clients

(c) (d)

Figure 2. Control loop templates: (a) the absolute guarantee specification, (b) basic loop, (c) prioritization, and (d) excess capacity
management.
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Our objective is thus to design a controller that decides
system’s settings (i.e. decides control variables) given the
current situation (i.e. knowledge of system structure and
measures or estimates of environment situation) in order to
keep the system satisfying its requirements. This objective can
be achieved by exploiting well established control theoretical
instruments, with a number of additional features relevant for
the assessment of actual software quality, as will be explained
in Sections IV and V.

A. A Representative Example

In this section we introduce a simple running case study,
consisting of a model for an image processing application.
The high level software model is shown in Figure 2. The
purpose of the system is to apply a filter to incoming images,
followed by a beautifying post-processing phase. It is equipped
with three different implementations of the filter: 1) direct
filtering via internal software, 2) iterative filtering via internal
software, and 3) direct filtering via outsourcing to an external
service. The DTMC system model is provided in Figure 3. The
figure shows that all operations have a certain probability of
failure (represented by transitions entering state SF ). State S1
represents the point of choice between the different filtering
options. The probabilities that govern this choice and the
probability of applying one more iteration after the execution
of the iterative filter (represented by state S2) are the control
variables in our setting. Control variables are indicated by
probability variables Ci in Figure 3 (referring to Figures 2
and 3, c1a is the probability of choosing the iterative filter,
c1b is the probability of choosing the internal direct filter

and thus 1 − c1a − c1b the probability of outsourcing; c5 is
the probability of requesting another iteration of the iterative
filter). These values can be changed online by the controller
while the software is executing. The controller in fact observes
the overall behavior (i.e., the overall probability of success or
failure) and tries to guarantee the requested global reliability
requirement by adjusting the invocation probabilities.
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Fig. 2. Schema of the software system.

We assume that all the alternatives are implemented by
black-box services that can be invoked and observed from
outside only. For each of these services, a run-time monitor
collects failure (or success) rates and estimates its reliability

as the probability that a invocation to the service will fail3.
It is necessary to postulate in the environment the existence
of monitoring instruments . In fact, the reliability of the
computational units is time-varying and the overall reliability
depends on these values. Even if their nominal values are
known at design time, unpredictable events could alter them,
altering as a consequence also the software behavior. This is
not uncommon, since the alteration could for example simply
come from sharing components with other customers, so that,
at different times, their availability depends on load conditions
of computational resources. Service reliability for each server
are thus just observable values subject to variations during
time (disturbances).
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Fig. 3. DTMC mode for the example system.

By solving the equation system (1) for x̄0 it is possible to
obtain a closed formula that describes the explicit dependency
of reliability (s) on control variables (c) and measured relia-
bilities (r).

s = r0 · r6 ·
�
c1a · (−1 + c5) · r2

−1 + c5 · r2
+ c1br3 + (1− c1a − c1b) · r4

�
(2)

The formula of s shown in the Equation will be later used to
design the controller in Sections IV and V4.

IV. SOFTWARE MODELS AS DYNAMIC SYSTEMS

In this section we show how the dynamic evolution of the
running software, as observed via the corresponding DTMC
model, can be cast in the simple control-theoretical framework
of discrete-time dynamic systems [15], through which we
achieve self-adaptation of the behavior to react to changing
conditions in the environment. Due to space limitations, the
background theory can not be fully stated here, but the

3Estimates are here assumed to be statistically correct [12] and repre-
sentative of the average or worst case, depending on the desired analysis
scenario. Interested readers can refer to [3] for a deeper discussion about
DTMC parameters estimation at runtime, which is out of the scope of this
paper.

4The same formula can be obtained by exploiting state of the art techniques
from parametric model-checking and DTMC analysis in [13], [14]
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events into a probability (typically, using a Bayesian approach,
as discussed in [3]). Blocks System and Controller in Figure 1
represent the modeled system and the controller, respectively.
The goal of the controller is to provide input values to the
system so that the resulting output (the observed sequence of
failure and success events) does not violate the requirement
expressed by the target, despite disturbances.

!"#$%"&&'% ()*$'+

,'-%#.#/0
1&"23

4-%/'$

52$6-&

7#86$ 96$86$

Fig. 1. Block diagram of the controlled system.

To understand what inputs and disturbances are in our
context, we must first discuss how we deal with adaptation
at the model level. We assume that the software model
describes all possible variations that may be chosen to support
adaptation. That is, the modeler anticipates a number of ways
through which the system may self adapt its behavior. In
a DTMC framework, choices can be expressed by using
probabilities, which label transitions corresponding to the
choice of different behaviors. By changing these probabilities
it is possible to either increase or decrease the chance that
a certain functionality is selected. In the extreme case, by
setting a probability to 0 (or 1) a certain functionality is either
excluded or included. These probabilities are inputs of our
controlled system, generated by the controller. By changing
them, the controller tries to ensure continuous satisfaction
of the target reliability despite disturbances. Disturbances, in
turn, are changes in the independent variables, also modeled
by transition probabilities, that represent physical phenomena,
like changes in the failure probability of external services or
in the user profiles.

To the best our knowledge, the control-theoretical approach
illustrated in this paper is a novel contribution to self-adaptive
system models. In this paper, we illustrate the approach
and provide an initial experimental assessment. The paper is
organized as follows. Section II introduces the claims of this
work and sketches the use of software models and abstractions
for dynamic adaptation and control. In Section III a DTMC
model for reliability is described and the case study used in
the rest of this paper is presented. Section IV proposes a
way to translate DTMC models into discrete time dynamic
systems. The control of the resulting dynamic system is shown
in Section V, that provides formal properties assessment
and shows the application of the proposed technique to the
chosen case study, evaluated in Section VI. Related works
are described in Section VII while section VIII concludes the
paper.

II. CONTROL THEORY AND SOFTWARE MODELING

The dynamics of software execution are very complex.
Nonetheless, being able to control those dynamics would mean
having a software capable to adapt and on-line tune itself
to meet the specified requirements. However, the presence
of intrinsic non linearities, the variety of usage profiles, the
distribution process and the interconnection of heterogeneous
components are some of the reasons why it is so hard to
directly provide a comprehensive behavioral model suitable for
control. At the same time, the need for continuous verification
of specific properties lead to the definition of simpler models.
These models are simple enough to allow the systematic syn-
thesis of controllers capable of driving the modeled dynamics
and still able to capture a number of aspects of the running
software that significantly characterize the software behavior
and support assessment of some of its properties.

In this paper we refer to a controller as any system that,
properly coupled to the software system, makes it fulfill its
requirements whenever they are feasible. Requirements can
be strict constraints on the behavior (e.g. reliability equal to a
certain value) or related to the optimization of certain metrics
on the observed software executions (e.g. minimization of
outsourcing costs or maximization of throughput).

This work is aimed at supporting the claim that control
theory provides a number of instruments that software engi-
neers can exploit to ensure the achievement of extra-functional
design goals in presence of changes in the environment. To
do so, we focus on the following main kinds of “reaction” the
controlled system should be able to provide:

1) change of the target requirements. If for some reason
the required nominal value of the overall reliability of
the composed system changes, the controller should be
able to drive the system toward a new operative state
satisfying the requirements.

2) robustness to sudden changes or fluctuations around
the nominal operative point assumed at design-time for
the environment phenomena. Interdependence among
software parts and components involves the use of third-
party services, remote storage, computing resources
out of the control of each company, and so on. All
these parts are characterized by the values of certain
QoS metrics, usually stated in convenient service level
agreements. During normal execution those values may
deviate from nominal values because of external factors
hardly predictable a priori (e.g. load conditions or hard-
ware failures). Actual values can be estimated on line
via monitoring.

3) robustness to accuracy errors in measurement and mon-
itoring. To capture relevant metrics of the execution we
rely on monitoring and/or other measurement proce-
dures. Each of these might get stuck into temporary bias
or might require a certain time to produce an appropriate
accuracy. We look for a controller able to provide a
reasonable behavior even in presence of transitory errors
on measured values. Such an ability, besides reducing
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load or radio signal strength over minutes,
or historical data such as the movements
of threat forces over hours.

Figure 1 illustrates the broad spectrum of
self-adaptability. At one extreme, conditional
expressions are a form of self-adaptation; the
program evaluates an expression and alters
its behavior based on the outcome. Although
simplistic, conditional expressions are a
common mechanism for implementing adap-
tive behavior. For example, a just-in-time
compiler might invoke aggressive code-opti-
mization techniques if a function is called
frequently.

Online algorithms operate under the as-
sumption that future events (inputs) are uncer-
tain. Hence, they will occasionally perform an
expensive operation to more efficiently
respond to future operations.1 Online algo-
rithms are adaptive in that they leverage knowl-
edge about the problem and the input domain
to improve efficiency. A memory-cache-pag-
ing algorithm, for example, leverages the spa-
tial and temporal locality of memory refer-
ences in determining which cached page to
evict when making room for a new page.

Generic and parameterized algorithms
provide behaviors that are parameterized,
usually through type instantiation or exter-
nal inputs. Generic or polymorphic algo-
rithms adapt by conforming to different data
types. The C++ Standard Template Library,
for example, provides generic iterator classes
used to traverse a variety of data structures.

Algorithm selection uses properties of the
operating environment to choose the most
effective algorithm among a fixed set of avail-
able algorithms. Thus, a system that uses algo-
rithm selection adapts to changes in its operat-
ing environment by switching among a set of
algorithms. The Self dynamic optimizing com-
piler, for example, uses program-profiling data
collected during program execution to select
different code-optimization algorithms.2

At the other extreme, evolutionary program-
ming and machine-learning techniques are
adaptive in that they use properties of the oper-
ating environment and knowledge gained from
previous attempts to generate new algorithms.3

Generally, approaches near the spectrum’s
bottom intertwine concerns regarding soft-
ware adaptation and application-specific
behavior. For example, a conditional expres-
sion combines the adaptation’s specification
with the application’s specification. Conse-
quently, understanding, analyzing, and mod-
ifying the two independently is arduous.

Approaches near the top more clearly sepa-
rate software-adaptation concerns and appli-
cation-specific functionality. For example,
algorithm generation separates the adapta-
tion’s specification from the produced algo-
rithm. Separating the concerns of software
adaptation from software function facilitates
their independent analysis and evolution.

Software adaptation in-the-
large

While technical advances in narrow areas
of adaptation technology provide some ben-
efit, the greatest benefit will accrue by devel-
oping a comprehensive adaptation method-
ology that spans adaptation-in-the-small to
adaptation-in-the-large, and then develops
the technology that supports the entire range
of adaptations. Figure 2 illustrates just such
a methodology that we are investigating.

The upper half of the diagram, labeled
“adaptation management,” describes the life-
cycle of adaptive software systems. The life-
cycle can have humans in the loop or be fully
autonomous. “Evaluate and monitor obser-
vations” refers to all forms of evaluating and
observing an application’s execution, includ-
ing, at a minimum, performance monitoring,
safety inspections, and constraint verifica-
tion. “Plan changes” refers to the task of
accepting the evaluations, defining an appro-

priate adaptation, and constructing a blue-
print for executing that adaptation. “Deploy
change descriptions” is the coordinated con-
veyance of change descriptions, components,
and possibly new observers or evaluators to
the implementation platform in the field.
Conversely, deployment might also extract
data, and possibly components, from the run-
ning application and convey them to some
other point for analysis and optimization.

Adaptation management and consistency
maintenance play key roles in this approach.
Although mechanisms for runtime software
change are available in operating systems
(for example, dynamic-link libraries in Unix
and Microsoft Windows), component object
models, and programming languages, these
facilities all share a major shortcoming: they
do not ensure the consistency, correctness,
or other desired properties of runtime
change. Change management is a critical
aspect of runtime-system evolution that
identifies what must be changed; provides
the context for reasoning about, specifying,
and implementing change; and controls
change to preserve system integrity. With-
out change management, the risks engen-
dered by runtime modifications might out-
weigh those associated with shutting down
and restarting a system.

Software adaptation is a complex process
and is further complicated by change drivers
ranging from purposeful adjustments in
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Figure 2. High-level processes in a comprehensive, general-purpose approach to self-adaptive software systems.
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interactions among autonomic elements as it will
from the internal self-management of the individual
autonomic elements—just as the social intelligence
of an ant colony arises largely from the interactions
among individual ants. A distributed, service-ori-
ented infrastructure will support autonomic ele-
ments and their interactions. 

As Figure 2 shows, an autonomic element will
typically consist of one or more managed elements
coupled with a single autonomic manager that con-
trols and represents them. The managed element
will essentially be equivalent to what is found in
ordinary nonautonomic systems, although it can
be adapted to enable the autonomic manager to
monitor and control it. The managed element could
be a hardware resource, such as storage, a CPU, or
a printer, or a software resource, such as a data-
base, a directory service, or a large legacy system.

At the highest level, the managed element could
be an e-utility, an application service, or even an
individual business. The autonomic manager dis-
tinguishes the autonomic element from its nonau-
tonomic counterpart. By monitoring the managed
element and its external environment, and con-
structing and executing plans based on an analysis

of this information, the autonomic manager will
relieve humans of the responsibility of directly man-
aging the managed element. 

Fully autonomic computing is likely to evolve as
designers gradually add increasingly sophisticated
autonomic managers to existing managed elements.
Ultimately, the distinction between the autonomic
manager and the managed element may become
merely conceptual rather than architectural, or it
may melt away—leaving fully integrated, auto-
nomic elements with well-defined behaviors and
interfaces, but also with few constraints on their
internal structure. 

Each autonomic element will be responsible for
managing its own internal state and behavior and
for managing its interactions with an environment
that consists largely of signals and messages from
other elements and the external world. An element’s
internal behavior and its relationships with other
elements will be driven by goals that its designer
has embedded in it, by other elements that have
authority over it, or by subcontracts to peer ele-
ments with its tacit or explicit consent. The element
may require assistance from other elements to
achieve its goals. If so, it will be responsible for
obtaining necessary resources from other elements
and for dealing with exception cases, such as the
failure of a required resource.

Autonomic elements will function at many levels,
from individual computing components such as
disk drives to small-scale computing systems such
as workstations or servers to entire automated
enterprises in the largest autonomic system of all—
the global economy.

At the lower levels, an autonomic element’s range
of internal behaviors and relationships with other
elements, and the set of elements with which it can
interact, may be relatively limited and hard-coded.
Particularly at the level of individual components,
well-established techniques—many of which fall
under the rubric of fault tolerance—have led to the
development of elements that rarely fail, which is
one important aspect of being autonomic. Decades
of developing fault-tolerance techniques have pro-
duced such engineering feats as the IBM zSeries
servers, which have a mean time to failure of sev-
eral decades.

At the higher levels, fixed behaviors, connections,
and relationships will give way to increased
dynamism and flexibility. All these aspects of auto-
nomic elements will be expressed in more high-
level, goal-oriented terms, leaving the elements
themselves with the responsibility for resolving the
details on the fly. 

Autonomic manager

Knowledge

Managed element

Analyze Plan

Monitor Execute

Figure 2. Structure of an autonomic element. Elements interact with other
elements and with human programmers via their autonomic managers.
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nisms from scratch for each new system would ren-
der the approach prohibitively expensive.

Our Rainbow framework attempts to address 
both problems. By adopting an architecture-based
approach, it provides reusable infrastructure together
with mechanisms for specializing that infrastructure
to the needs of specific systems. These specialization
mechanisms let the developer of self-adaptation capa-
bilities choose what aspects of the system to model
and monitor, what conditions should trigger adap-
tation, and how to adapt the system.

THE RAINBOW FRAMEWORK
Figure 2 shows the Rainbow framework’s con-

trol loop for self-adaptation. Rainbow uses an
abstract architectural model to monitor an execut-
ing system’s runtime properties, evaluates the
model for constraint violation, and—if a problem
occurs—performs global- and module-level adap-
tations on the running system.

Software architectures
Rainbow adopts a standard view of software

architecture that is typically used today at design
time to characterize a system to be built. Specifi-
cally, an architecture is represented as a graph of
interacting computational elements.4 Nodes in the
graph, called components, represent the system’s
principal computational elements and data stores,
including clients, servers, databases, and user inter-
faces. Arcs, called connectors, represent the path-
ways for interaction between the components.
Additionally, architectural elements may be anno-
tated with various properties, such as expected
throughputs, latencies, and protocols of interac-
tion. Components themselves may represent com-
plex systems, which are represented hierarchically
as subarchitectures.

However, unlike traditional uses of software
architecture as strictly a design-time artifact,
Rainbow includes a system’s architectural model
in its runtime system. In particular, developers of
self-adaptation capabilities use a system’s software
architectural model to monitor and reason about
the system. Using a system’s architecture as a con-
trol model for self-adaptation holds promise in sev-
eral areas. As an abstract model, an architecture
can provide a global perspective of the system and
expose important system-level behaviors and prop-
erties. As a locus of high-level system design deci-
sions, an architectural model can make a system’s
topological and behavioral constraints explicit,
establishing an envelope of allowed changes and
helping to ensure the validity of a change.

Figure 3 shows one example of an architecture
in which the components represent Web clients and
server clusters. Each server cluster has a subarchi-

System

Control

Adapt Monitor

Figure 1. External control of self-adaptation uses external models to monitor and
modify a system dynamically.
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Figure 2. Rainbow framework. The framework uses an abstract model to monitor
an executing system’s runtime properties, evaluates the model for constraint vio-
lation, and—if a problem occurs—performs adaptations on the running system. 
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•  Reference	  model	  based	  on	  Gat’s	  

3-‐layer	  roboMcs	  model	  
•  Component	  control	  realizes	  

applicaMon	  funcMons	  
•  Change	  management	  handles	  

adaptaMons	  of	  component	  layer	  
based	  on	  set	  of	  plans	  	  

•  Goal	  management	  produces	  
change	  management	  plans	  
when	  needed	  (e.g.,	  to	  deal	  with	  
new	  condiMons	  or	  goals)	  	  
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FORMS	  2012	  	  

	  
D.	  Weyns,	  S.	  Malek,	  J.	  Andersson,	  	  FORMS:	  Formal	  reference	  model	  for	  self-‐adaptaMon,	  ACM	  TransacMons	  
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•  FOrmal	  Reference	  Model	  for	  Self-‐adaptaMon	  
•  Integrates	  different	  perspecMves	  on	  self-‐
adaptaMon	  
–  ReflecMon	  perspecMve	  	  
– MAPE-‐K	  perspecMve	  
–  DistribuMon	  perspecMve	  



FORMS:	  Running	  Example	  
Traffic	  jam	  monitoring	  

19	  

	  

D.	  Weyns,	  R.	  Haesevoets,	  A.	  Helleboogh,	  T.	  Holvoet,	  W.	  Joosen,	  The	  MACODO	  Middleware	  for	  Context-‐Driven	  
Dynamic	  Agent	  OrganzaMons,	  ACM	  TransacMon	  on	  Autonomous	  and	  AdapMve	  Systems,	  5(1):3.1–3.29,	  2010.	  
	  



20	  

Running	  Example:	  traffic	  jam	  monitoring	  



21	  

Running	  Example:	  traffic	  jam	  monitoring	  



FORMS	  ReflecMon	  PerspecMve	  

22	  



23	  

FORMS	  ReflecMon	  PerspecMve	  
Self-‐adapMve	  system	  
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Timeout
ΞSelfHealingManager
Tick
n! : Name

∃n! : Name; t : Time • (n!, t) ∈ coordinationMechanism.pingTime ∧
t + coordinationMechanism.waitTime > time �

The schema tells us that a timeout does not change its state. A timeout happens when the clock
makes a tick. The predicate states that a timeout for a particular camera is reached when the
time after the tick exceeds the last ping time for that camera plus the wait time.

We now explain how self-healing is realized for one of the cameras. The timeout for self-
healing manager 1 after the crash of camera 2 is defined as:

Timeout1
Timeout
ΞSelfHealingManagerOneT2

time = 4470
n! = 2

The timeout happens when the clock makes a tick at time “4470” (recall that the ping message
to camera 2 was sent at time “4430” and the waiting time is 40 time units). The timeout applies
for camera 2.

Finally, the recovery of camera 1 for the failure of camera 2 is defined as:
CameraOneRecoversFromFailureCameraTwo
∆TrafficJamMonitoringSystemT3

TrafficEnvironmentT3

Timeout1
lcs1?, lcs1! : SituatedLocalCameraSystem
camera : Attribute
cam : EnvironmentRepresentation
n : Name

{camera} = first(c?) ∧
traffic communication channel = traffic communication channel \ {n �→ cam} ∧
...
lcs1?.myName = 1 ∧
lcs1!.context = lcs1?.context \ {camera} ∧
lcs1!.selfHealingSubsystem = updateSelfHealingSubsystem(lcs1?, camera, cam,n) ∧
lcs1!.localTrafficMonitoringSystem =

adaptLocalTrafficMonitoringSystem(lcs1?, camera, cam,n) ∧
localCamaraSystems � = localCamaraSystems \ {lcs1?} ∪ {lcs1!}

The specification declaratively specifies the adaptations the local camera system after the failure
of the camera. The first part of the predicate selects the failing camera using the camera failure
event. Next, the communication channels are updated. Then, some minor aspects are omitted.
Subsequently, the recovering local camera system is selected (with myName = 1) and the failing
camera is removed from its context. Finally, the adaptation is specified, consisting of two parts:
an update of the state of the self-healing subsystem and the actual adaptation of the local traffic
monitoring system (using two helper functions that are omitted here). From an operational
point of view, the self-healing manager will update its state and apply the adaptation of the
local traffic monitoring system using various read and write operations.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Reference	  approaches	  for	  self-‐adaptaMon	  	  
FORMS	  2012	  	  

	  
•  Integrated,	  extensible	  model	  
•  Formal	  underpinning	  
•  Focus	  on	  modeling	  and	  reasoning	  about	  structural	  
aspects	  of	  self-‐adapMve	  systems	  

•  Reference	  model	  can	  be	  mapped	  to	  different	  
architectures	  	  

•  Vocabulary	  for	  domain	  of	  self-‐adapMve	  systems	  
	  



Overview	  

•  Architecture-‐based	  self-‐adaptaMon	  vs.	  control-‐
based	  self-‐adaptaMon	  

•  Reference	  approaches	  for	  architecture-‐based	  
self-‐adaptaMon	  

•  Formal	  methods	  for	  self-‐adapMve	  systems	  
•  AcMve	  formal	  methods	  for	  self-‐adaptaMon	  
•  Wrap	  up	  



Formal	  methods	  for	  self-‐adaptaMon	  
A	  selecMon	  

•  2006:	  Zhang	  &	  Cheng	  (design	  Mme	  verificaMon	  
and	  model	  transformaMon)	  

•  2009:	  Epifani	  et	  al.	  (K	  models	  at	  runMme)	  	  
•  2011:	  Calinescu	  et	  al.	  	  (MAPE	  funcMons	  at	  
runMme)	  

•  2013:	  Ghezzy	  et	  al.	  (model	  interpretaMon)	  

	  
D.	  Weyns,	  U.	  IBikhar,	  D.	  Gil	  de	  la	  Iglesia,	  and	  T.	  Ahmad,	  A	  Survey	  on	  Formal	  Methods	  in	  Self-‐AdapMve	  
Systems,	  FiBh	  InternaMonal	  C*	  Conference	  on	  Computer	  Science	  and	  SoBware	  Engineering	  2012	  



Formal	  methods	  for	  self-‐adapMve	  systems	  	  
Zhang	  and	  Cheng	  2006	  	  

	  
•  Different	  classes	  of	  

adaptaMons	  
–  one-‐point,	  guided	  
adaptaMon,	  overlap	  
adaptaMon	  

•  Process	  to	  create	  and	  
verify	  formal	  models	  
(Petri	  nets	  and	  LTL)	  

•  AutomaMcally	  generate	  
programs	  from	  them	  

	  
J.	  Zhang	  and	  B.	  Cheng,	  Model-‐based	  development	  of	  dynamically	  adapMve	  soBware,	  InternaMonal	  
Conference	  on	  SoBware	  Engineering,	  ICSE	  2006	  	  	  	  	  	  	  	  	  	  	  	  
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specified global invariants, an adaptive program should also
satisfy an adaptation integrity constraint : Once the adap-
tation starts, it should complete, i.e., the adaptation
should finally reach a state of the target program. Viola-
tions of this constraint result in an inconsistent state of the
program that is not designed for the target domain, and we
have no means to ensure its correctness.

The example shown in Figures 8, 9, and 10 is, in fact, an
entire model with overlap adaptation. After the sender has
adapted to the target domain, the receiver still remains in
its source domain. The adaptation starts when the sender
adapt transition is fired, and ends when the receiver adapt
transition is fired. The adaptation of the sender and the
receiver has a cause-effect relationship: The receiver’s adap-
tive transition is triggered by a packet sent by the adapted
sender. By composing the sender and the receiver adapta-
tion as an overlap adaptation, we are able to specify the
following two additional constraints:

• GSM example loss-tolerance global invariant:
The adaptive program should tolerate 2-packet loss
throughout its execution. In LTL,

(!lossCount <= 2) → (!¬lose(x))

We used model checking to verify this property successfully.

• GSM example adaptation integrity constraint:
If the sender adaptive transition is fired, then the re-
ceivers’s adaptive transition will also eventually be fired.
In LTL,

!(senderAdapted → ♦receiverAdapted)

We found errors when model checking the adaptation in-
tegrity constraint. By inspecting the counter example, we
realized that in a rare case, if all the packets after the
sender’s adaptation are lost, then the receiver will not re-
ceive any packet encoded by the target sender, and thus the
receiver will not adapt. We revised the model by using a re-
liable communication channel to send the first packet after
sender adaptation, so that the receiver will be guaranteed

to receive the packet. Note that it is generally possible to
build a reliable communication channel on top of unreliable
underlying infrastructure by using acknowledgement-based
protocols. Using it to send audio-stream would incur a per-
formance penalty. However, the penalty is negligible, if we
use it to send only critical packets occasionally. We reran the
model checking for the revised model against the adaptation
integrity constraint and the result showed that the adapta-
tion indeed runs to completion with the revised model.

4.4 Discussion
As described in Section 3, depending on the perspective

and the level of abstraction in which the developers are inter-
ested, a source program, a target program, or an adaptation
set may be adaptive itself. The above specification technique
may be applied recursively to specify the internal structure
of a program or an adaptation set. For the GSM-oriented
protocol example, we may apply guided adaptation for the
sender and one-point adaptation for the receiver, resulting
in a more complex adaptation scenario.

For a general adaptive program with multiple programs
and adaptation sets, we first divide the program into a num-
ber of simple adaptive programs, then specify each simple
adaptive program individually. In our approach, we ver-
ify the global invariants for each simple adaptive program.
We expect the global invariants to hold for all executions,
including those with multiple occurrences of adaptations.
We can prove that this is the case for all point safety and
point liveness LTL formulae and their propositional compo-
sitions [24]. A point safety formula has the form !¬η where
η is a point formula [25], i.e., a formula without temporal op-
erators. A point liveness formula has the form !(α → ♦β),
where both α and β are point formulae. The global in-
variants discussed in this paper are all point liveness, point
safety properties, or their propositional compositions.

5. REIFYING THE MODELS
An adaptive model is an abstraction of an adaptive pro-

gram in the sense that a model is a projection of the pro-
gram behavior on an interesting alphabet (i.e., transitions);
it represents a partial view of a program in which we are in-
terested. We explain this idea with the GSM-oriented audio
streaming example. From the models we have built, we can
identify four different programs (Figure 11): the source and
the target programs PS and PT , and two intermediate pro-
grams P1 and P2. The model in Figure 8 describes the adapt
sender adaptation projected onto the sender. The model in
Figure 9 describes the adapt receiver adaptation projected
onto the receiver. The model in Figure 10 describes the
restrict sender adaptation projected onto the sender.
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Figure 11: An adaptive program state machine

This section introduces Step (6), the approach to generate
executable prototypes and develop code based on the models
constructed in the previous section with the assistance of the
Renew tool suite [16].
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Formal	  methods	  for	  self-‐adapMve	  systems	  	  
Epifani	  et	  al.	  2006	  	  

	  
•  ProbabilisMc	  model	  

represents	  reliability	  of	  
execuMon	  flows	  of	  system	  

•  ProbabiliMes	  are	  
dynamically	  updated	  
based	  on	  observaMons	  

•  Formal	  model	  of	  system	  
behavior	  at	  runMme:	  focus	  
on	  K	  of	  MAPE-‐K	  

	  
I.	  Epifani,	  C.	  Ghezzi,	  R.	  Mirandola,	  and	  G.	  Tamburrelli.	  2009.	  Model	  evoluMon	  by	  run-‐Mme	  parameter	  
adaptaMon,	  InternaMonal	  Conference	  on	  SoBware	  Engineering,	  ICSE	  2009	  	  	  	  	  	  	  	  	  	  	  	  

confidence in it. It is important to notice that, in KAMI, it is
not strictly necessary to model the whole system, but only
the sub-parts that are considered as critical.

Modeling

Initial 

Estimates

Implementation

Bayesian 

Estimation

Refined Estimates

Runtime 

Data

QoS 

Requirements

Figure 1. Methodology Scheme

A crucial factor of KAMI is the mechanism adopted to
transform run-time data extracted by running instances of
the implemented system into estimates of model parame-
ters. KAMI performs this task by exploiting Bayesian Es-
timation Theory [6]. An informal explanation that justifies
this approach is given in Section 5.1.

Summing up, let us consider again the example of a com-
ponent based system modeled with a QN. When the system
has been completely developed, tested, and deployed it is
possible to collect data from its running instances. We can
measure, for example, the customer interarrival time (CIT)
and through the Bayesian estimation we can estimate its dis-
tribution (CITD). Consequently, the QN model is updated
and checked at run time against the desired requirements.

3. A Running Example

This section illustrates a running example, which deals
with Web-service compositions, used in this paper to illus-
trate the KAMI approach. Web-service compositions (and
SOAs in general [28]) make an excellent case for the need
of keeping models alive at run time. A Web-service compo-
sition is an orchestration of Web services aimed at building
a new service by exploiting a set of existing ones. The or-
chestration is performed through a workflow language, such
as BPEL [1, 10], a de-facto standard. BPEL instances co-
ordinate services that are typically managed by external or-
ganizations, other than the owner of the service composi-
tion. This distributed ownership implies that the final func-
tional and non-functional properties of the composed ser-
vice rely on behaviors of third-party partners that influence
the obtained results. At design time, a model can be used

to guarantee that the QoS of a composite service satisfies
the requirements, based on the hypothesized QoS of each
composed external service. However, design-time verifica-
tion does not suffice. The declared QoS of composed ser-
vices may turn out not to be met in practice. In addition,
because of the decentralized nature of services and of mul-
tiple ownership, external services may undergo independent
and unanticipated changes, which may lead to violating the
global QoS requirements.

The running example we use in the paper is based on a
case study, illustrated in [3], which deals with a distributed
system for medical assistance. The application, called Tele-
Assistance (TA), consists in a BPEL process for remote
assistance of patients. Figure 2 illustrates the application,
in which a server runs the TA composite service. The de-
scription is provided graphically. A summary of BPEL con-
structs and the graphical notation we use to describe them
are summarized in the Appendix.

The process starts as soon as a Patient (PA) enables the
home device supplied by TA, which sends a message to
the process’ receive activity startAssistance. Then, it en-
ters an infinite loop: every iteration is a pick activity that
suspends the execution and waits for one of the following
three messages: (1) vitalParamsMsg, (2) pButtonMsg, or
(3) stopMsg. The first message contains the patient’s vital
parameters that are forwarded by the BPEL process to the
Medical Laboratory service (LAB) by invoking the opera-
tion analyzeData. The LAB is in charge of analyzing the
data and replies by sending a result value stored in a vari-
able analysisResult. A field of the variable contains a value
that can be: changeDrug, changeDoses or sendAlarm. The
latter message triggers the intervention of a First-Aid Squad
(FAS) composed of doctors, nurses, and paramedics, whose
task is to visit the patient at home in case of emergency. To
alert the squad, the TA process invokes the operation alarm
of the FAS. The message pButtonMsg caused by pressing
a panic button also generates an alarm sent to the FAS. Fi-
nally, the message stopMsg indicates that the patient may
decide to cancel the TA service.

4. Reliability Modeling via DTMCs

Different models may be used to reason about different
non-functional properties of a software architecture. All
such models require that certain parameters characterizing
the final running system should be specified. Although
the KAMI methodology and its prototype implementation
apply to any probabilistic non-functional quality attribute,
hereafter we focus on reliability [21, 20] and on models
based on DTMCs. KAMI also supports performance analy-
sis via QNs. Run-time adaptation of QN parameters can be
performed by applying the same statistical machinery we il-
lustrate for DTMCs. The next section introduces DTMCs.
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Fig. 3. Translation Process.

responds to the automaticProductLookup implementation (see

Listing 1), is annotated with its impact in terms of response

time (i.e., 0.5s), energy consumption (i.e., 2), and usability

(i.e., 1). Since symbolic state are artificially generated by the

translation process they are annotated with neutral values:

RT = 0, E = 0, U = 0. Notice that, by construction, the

obtained EM represents all the possible execution flows of the

system in terms of target implementations. Indeed, starting

from its initial state, the MDP has multiple alternative paths

towards the final state. The translation process performed by

the Generator hides the complexity of MDPs to developers.

A formal description of the automatic translation algorithm is

not given here for space reasons. It is based on the automatic

translation of an annotated Activity Diagram into a Markov

process that was presented in our previous work (i.e., [13]).

C. Model Manipulation

The annotations attached to the states of the EM represent

the impact of the corresponding implementation on quality

metrics. Formally, this information corresponds to rewards
in the MDP formalisms (see the Appendix). It can be used

to compute the minimum and maximum cumulative rewards

(indicated as minR(s) and maxR(s)) from each state s to the

final state in the model and for each quality metric. The com-

putation of such cumulative rewards may be arbitrarily com-

plex because of three characteristics of the model: (1) loops,

(2) probabilities attached to transitions, (3) a large number of

alternative paths. We rely on a probabilistic model checker,

such as PRISM [14], to compute them. Given these premises,

we manipulate the model by replacing impact numbers at-

tached to each state s with an interval �minR(s),maxR(s)�
for every requirement metric of the system. It is important to

notice that such intervals represent forecasts of the impacts

necessary to complete the execution (i.e., reach the final state)

starting from a specific state s of the model. At execution

time, such values are used by the Interpreter to select the most

appropriate path towards the final state, as illustrated in Section

III-D. Figure 4 illustrates the cumulative rewards obtained by

exploiting PRISM for some states of the EM. Notice that,

when cumulative rewards are computed for response time,

all the states characterized by user interaction (i.e., whose

corresponding implementations are annotated with @UI) are

considered as final states of the EM together with the original

final states. Indeed, the requirements concerning response time

(e.g., R1) predicate over the portions of the system in which

the computation occurs autonomously, i.e., without user input.
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Fig. 4. Model Execution Example.

Manipulating the SR Model. At this stage, we manipulate

each state s of the model in Figure 3(d) by replacing impact

numbers with intervals in the form �minR(s),maxR(s)�, for

every requirement metric, obtained by running the probabilis-

tic model checker, as explained above. For example, let us

focus on state 6a and usability. In this case the model checker

yields the following values: �4; 6�. These values indicate that

an execution reaching state 6a will have an additional usability

impact value in the interval �4; 6� to reach the final state.

Similarly, for the response time and energy consumption we

obtain �2.9; 4.1� and �8; 11�, respectively.
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Fig. 1. The ADAM Approach.

automaton, called Embedded Model (EM). In the EM, each

state represents an implementation of an abstract functionality

of the system, while paths represent all the possible execution

flows. The Interpreter is, instead, in charge of executing the

system by navigating the automaton state-by-state and by

invoking the chosen target implementations associated to the

states it traverses. In particular, it is responsible for driving and

adapting the execution by choosing among alternative paths

of the automaton in order to maximize the system’s ability

to meet its non-functional requirements. By this we mean

that the Interpreter first measures the effects of non-functional

uncertainty (e.g., the response time of invoked functionalities)

and consequently chooses the most convenient path in the

EM to maximize the likelihood of meeting all the system’s

requirements. This way, if the Interpreter detects that the

current execution is slower w.r.t. a certain performance re-

quirement, it may autonomously decide to drive the execution

by choosing a specific (fast) path in the EM that guarantees the

compliance with the performance requirement. The approach

comprises the following steps: (1) Modeling, (2) Transforma-

tion, (3) Model Manipulation, and (4) Execution. Hereafter,

we describe each of them in detail. For each step, we also

illustrate it referring to the SR example.

A. Modeling

As previously introduced, the system is initially conceived

in terms of abstract functionalities and modeled by one or more

UML Activity Diagrams, which organize them in workflows.

For each abstract functionality, engineers also provide one or

more corresponding alternative target implementations. The

design methodology to derive the set of target concrete func-

tionalities for each abstract one, given the overall requirements

and an uncertainty mitigation policy, is out of scope of the

present paper. We observe, however, that designing systems

in terms of alternative implementations corresponds to an

approach already used for complex software systems, even

if informally. For example, in mobile applications, the user

location is typically obtained by relying on two alternatives:

(1) the GPS sensor or (2) the NPS. Clearly, every abstract

functionality needs at least one corresponding implementation.

In addition, while modeling, engineers are allowed to annotate

a subset of the abstract functionalities as Optional. Usually,

optional functionalities are not essential for the correctness of
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Fig. 2. ShopReview UML Activity Diagram.

the final result, but may, however, affect usability. If necessary,

they are sacrificed to accomplish more important goals. As

illustrated in the example, each non-functional requirement

predicates over a certain non-functional metric. As a conse-

quence, each implementation is annotated with the impact it

has w.r.t. these metrics. For example, an implementation of

an abstract functionality with an expected response time of

2 seconds is annotated with responseTime=2s. Concrete

implementations that require user interaction cannot be an-

notated with an impact on response time, since they depend

on the user’s think time. They are therefore annotated with

@UI, whose meaning will become clear later on. Notice that

the annotation process occurs for each requirement metric on

all the implementations. Finally, ADAM requires engineers to

annotate each branch of decision nodes in the UML Activity

Diagram with the expected probability that an execution of the

system may take that branch. When not specified, branches are

considered to have the same probability.

Modeling the SR Application. The modeling step applied to

the SR example may produce the Activity Diagram illustrated

in Figure 2. For each abstract functionality, one or more con-

crete implementations are provided. For instance, concerning

ProductLookup, which translates a barcode into a product

name, SR relies on a remote service (e.g., searchupc.com) as

one of the possible implementations. Alternatively, the appli-

cation may ask the user to directly provide the product’s name.

As for searching the Web for more convenient prices, SR

relies on a primary remote service (e.g., shopzilla.com) and on

complementary services, represented by the abstract function-

alities WebSearch and SecondaryWebSearch, respectively. Note

that the SecondaryWebSearch is annotated as an Optional

functionality to represent the fact that it may be omitted at run-

time, if necessary. Similarly, the ResultOrdering functionality,

which sorts the results of WebSearch and LocalSearch by price

and distance, respectively, has been annotated as optional.

Concrete implementations are provided by Java methods

using the ad-hoc annotation @Implementation to refer to

the abstract functionality they implement. Moreover, the anno-

tation @Impact is used to specify the impact the implemen-
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Fig. 3. Translation Process.

responds to the automaticProductLookup implementation (see

Listing 1), is annotated with its impact in terms of response

time (i.e., 0.5s), energy consumption (i.e., 2), and usability

(i.e., 1). Since symbolic state are artificially generated by the

translation process they are annotated with neutral values:

RT = 0, E = 0, U = 0. Notice that, by construction, the

obtained EM represents all the possible execution flows of the

system in terms of target implementations. Indeed, starting

from its initial state, the MDP has multiple alternative paths

towards the final state. The translation process performed by

the Generator hides the complexity of MDPs to developers.

A formal description of the automatic translation algorithm is

not given here for space reasons. It is based on the automatic

translation of an annotated Activity Diagram into a Markov

process that was presented in our previous work (i.e., [13]).

C. Model Manipulation

The annotations attached to the states of the EM represent

the impact of the corresponding implementation on quality

metrics. Formally, this information corresponds to rewards
in the MDP formalisms (see the Appendix). It can be used

to compute the minimum and maximum cumulative rewards

(indicated as minR(s) and maxR(s)) from each state s to the

final state in the model and for each quality metric. The com-

putation of such cumulative rewards may be arbitrarily com-

plex because of three characteristics of the model: (1) loops,

(2) probabilities attached to transitions, (3) a large number of

alternative paths. We rely on a probabilistic model checker,

such as PRISM [14], to compute them. Given these premises,

we manipulate the model by replacing impact numbers at-

tached to each state s with an interval �minR(s),maxR(s)�
for every requirement metric of the system. It is important to

notice that such intervals represent forecasts of the impacts

necessary to complete the execution (i.e., reach the final state)

starting from a specific state s of the model. At execution

time, such values are used by the Interpreter to select the most

appropriate path towards the final state, as illustrated in Section

III-D. Figure 4 illustrates the cumulative rewards obtained by

exploiting PRISM for some states of the EM. Notice that,

when cumulative rewards are computed for response time,

all the states characterized by user interaction (i.e., whose

corresponding implementations are annotated with @UI) are

considered as final states of the EM together with the original

final states. Indeed, the requirements concerning response time

(e.g., R1) predicate over the portions of the system in which

the computation occurs autonomously, i.e., without user input.

!"

!#

$%%%

&'()*%+,-.%./
0()1,-+/
2()3,-4/

&'()*%5,-.%3/
0()1,-+/
2()3,-4/

6

&'()*,-*%5/
0()3,-4/
2().,-3/

%%%

Fig. 4. Model Execution Example.

Manipulating the SR Model. At this stage, we manipulate

each state s of the model in Figure 3(d) by replacing impact

numbers with intervals in the form �minR(s),maxR(s)�, for

every requirement metric, obtained by running the probabilis-

tic model checker, as explained above. For example, let us

focus on state 6a and usability. In this case the model checker

yields the following values: �4; 6�. These values indicate that

an execution reaching state 6a will have an additional usability

impact value in the interval �4; 6� to reach the final state.

Similarly, for the response time and energy consumption we

obtain �2.9; 4.1� and �8; 11�, respectively.
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Summary	  SOTA	  

•  Increasing	  a8enMon	  for	  formal	  models	  at	  
runMme	  to	  provide	  guarantees	  of	  adaptaMon	  	  

•  ProbabilisMc	  approaches	  dominate	  	  
•  Focus	  on	  formal	  models	  of	  system,	  
environment	  and	  goals	  (K	  of	  MAPE-‐K)	  

•  No	  systemaMc	  formalizaMon	  and	  verificaMon	  of	  
of	  adaptaMon	  funcMons	  (MAPE	  of	  MAPE-‐K)	  

•  Limited	  support	  for	  unpredicted	  changes	  



Overview	  

•  Architecture-‐based	  self-‐adaptaMon	  vs.	  control-‐
based	  self-‐adaptaMon	  

•  Reference	  approaches	  for	  architecture-‐based	  
self-‐adaptaMon	  

•  Formal	  methods	  for	  self-‐adapMve	  systems	  
•  AcMve	  formal	  methods	  for	  self-‐adaptaMon	  
•  Wrap	  up	  



StarMng	  points	  	  

•  Formalize	  adaptaMon	  funcMons	  to	  provide	  
guarantees	  about	  adaptaMon	  capabiliMes	  
– E.g.,	  does	  analysis	  detect	  errors	  correctly?	  	  
– Are	  adaptaMons	  performed	  in	  order	  of	  selected	  
plan?	  	  

•  Support	  unanMcipated	  changes	  
– Requires	  support	  for	  adaptaMons	  of	  adaptaMon	  
funcMons	  



AcMvFORMS	  
AcMve	  formal	  models	  for	  self-‐adaptaMon	  

•  Formal	  model	  of	  complete	  MAPE-‐K	  loop	  
•  Model	  is	  directly	  executed	  to	  adapt	  the	  
managed	  system	  

•  Model	  directly	  supports	  online	  verificaMon	  of	  
goal	  saMsfacMon/violaMon	  

•  Model	  can	  be	  adapted	  at	  runMme	  to	  support	  
unanMcipated	  changes	  	  	  

h8p://homepage.lnu.se/staff/daweaa/AcMvFORMS.htm	  (from	  October	  15,	  2013)	  



Focus	  

•  3	  layered	  model	  of	  Kramer	  &	  Magee	  	  
–  Component	  control	  (layer	  1),	  change	  management	  (2),	  
goal	  management	  (3)	  

•  Focus	  on	  layer	  2	  and	  3	  
– AssumpMon:	  managed	  system	  is	  equipped	  with	  
required	  sensors	  and	  effectors	  	  

–  InstrumentaMon	  of	  managed	  system	  is	  research	  
subject	  in	  its	  own	  right	  

•  Case	  study:	  logisMc	  mulM-‐robot	  system	  
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Case	  study	  



Approach	  



Approach	  

•  AcMve	  model	  	  
–  Is	  a	  formally	  verified	  model	  	  
–  Realizes	  a	  MAPE-‐K	  loop	  	  
–  To	  adapt	  the	  managed	  system	  	  

•  Goal	  management	  	  
– Monitors	  the	  acMve	  model	  
–  Can	  adapt	  the	  acMve	  model	  (e.g.,	  to	  improve	  it	  or	  deal	  with	  
a	  parMcular	  adaptaMon	  problem)	  	  

•  Engineer/Admin	  	  
–  Can	  monitor	  goal	  saMsfacMon/violaMon	  
–  Can	  change	  the	  acMve	  model,	  verify	  and	  deploy	  it,	  to	  
manage	  (new)	  goals	  using	  goal	  management	  



RealizaMon	  



Goal	  Management	  Interface	  



Virtual	  machine	  

•  Transforms	  a	  formal	  model	  (network	  of	  Mmed	  
automata)	  into	  a	  graph	  representaMon	  	  

•  Executes	  that	  model	  	  
•  Can	  adapt	  the	  current	  model	  at	  runMme	  
•  Can	  detect	  and	  noMfy	  goal	  violaMons	  



Levels	  of	  adaptaMon	  

•  Level	  1:	  acMve	  model	  adapts	  the	  managed	  
system	  
– Close	  temporally	  a	  lane	  in	  the	  warehouse	  for	  
maintenance	  	  	  

•  Level	  2:	  adapt	  the	  acMve	  model	  (adapt	  MAPE)	  
– Add	  a	  new	  drop	  locaMon	  in	  the	  warehouse	  



Level 1 adaptations 
Close temporally a lane in the warehouse for maintenance 

 

-‐	  Adapt	  the	  robot	  to	  prevent	  it	  from	  
using	  a	  closed	  lane	  	  



Level 1 adaptations 
Close temporally a lane in the warehouse for maintenance 

 



Level 2 adaptations 
Add a new drop location in the warehouse 

 
-‐	  Add	  new	  part	  of	  the	  map	  for	  the	  robot	  
-‐	  Creates	  new	  deadlock	  situaMons	  when	  
certain	  lanes	  are	  disabled	  
-‐	  Requires	  adding	  new	  representaMon	  in	  K	  
and	  adaptaMons	  of	  MAPE	  funcMons	  



Level 2 adaptations 
Deal with new deadlock threat (close additional lane): e.g., update planner 

 
 

enableLane()

planningOngoing()

planned()

disableLane() && !waitRequired()

execute[RiD]!

planning[RiD]?

planEnabling() planDisabling()

planned()

planningOngoing()

disableLane() 

&& !waitRequired()

laneDisabled() 

&& posUpdated()

execute[RiD]!

enableLane()

remRequest() 

&& !waitRequired()

addRequest()

planning[RiD]?

planEnabling()

planDisabling(), 

lockExtraNode()

planAddition()

planRemoval()

lockExtraNode()



Level 2 adaptations 
Add a new drop location in the warehouse 

 



AcMvFORMS	  summary	  

•  Formal	  acMve	  model	  guarantees	  verified	  
properMes	  of	  the	  adapMon	  process	  

•  AcMve	  model	  directly	  executes	  the	  adaptaMon:	  
no	  coding,	  no	  model	  transformaMons	  

•  AdaptaMon	  of	  adaptaMon	  funcMons:	  
lightweight	  process	  to	  add	  new	  goals	  	  

•  Online	  detecMon	  of	  goal	  violaMons	  



Tradeoffs	  

•  Expert	  knowledge	  to	  design	  and	  change	  the	  
formal	  models	  	  

•  Modeling	  is	  limited	  by	  the	  expressive	  power	  of	  
the	  modeling	  language	  	  

•  Language	  might	  not	  be	  appropriate	  to	  model	  
adapMon	  logic	  for	  parMcular	  types	  of	  systems	  	  	  

•  Possible	  performance	  overhead	  	  



Paves	  the	  way	  for	  future	  research	  

•  Domain	  specific	  design	  primiMves	  to	  support	  
the	  designer	  	  

•  Different	  modeling	  languages	  (e.g.	  
probabilisMc	  automata	  to	  model	  domain)	  	  

•  CoordinaMon	  between	  AcMve	  Models	  in	  
decentralized	  se|ng	  

•  AutomaMon	  goal	  management	  by	  learning	  	  
•  Scalable	  runMme	  verificaMon	  	  
	  

	  



Overview	  

•  Architecture-‐based	  self-‐adaptaMon	  vs.	  control-‐
based	  self-‐adaptaMon	  

•  Reference	  approaches	  for	  architecture-‐based	  
self-‐adaptaMon	  

•  Formal	  methods	  for	  self-‐adapMve	  systems	  
•  AcMve	  formal	  methods	  for	  self-‐adaptaMon	  
•  Wrap	  up	  



Wrap	  up:	  Goals	  of	  this	  tutorial	  

•  Understand	  the	  noMon	  of	  self-‐adaptaMon	  	  
•  Get	  familiar	  with	  references	  approaches	  for	  
architecture-‐based	  self-‐adaptaMon	  

•  Get	  familiar	  with	  state	  of	  the	  art	  in	  formal	  
methods	  for	  self-‐adapMve	  systems	  	  

•  Understand	  the	  challenges	  in	  formal	  methods	  
at	  runMme	  for	  self-‐adapMve	  systems	  



Wrap	  up	  
Understand	  the	  noMon	  of	  self-‐adaptaMon	  

•  Self-‐adaptaMon	  is	  moMvated	  by	  the	  need	  to	  deal	  with	  
design	  Mme	  uncertainMes	  	  

•  Two	  key	  families	  are	  	  
–  Control-‐based	  self-‐adaptaMon:	  controller	  design	  and	  
analysis	  based	  on	  control	  theoreMc	  foundaMon	  

–  Architecture-‐based	  self-‐adaptaMon:	  feedback	  loop	  reasons	  
about	  self-‐model	  and	  adapts	  system	  when	  needed	  	  	  

•  SeparaMon	  between	  managed	  and	  managing	  system	  
–  Concerns	  of	  managed	  system	  are	  about	  the	  domain	  at	  
hand	  	  

–  Concerns	  of	  managing	  system	  are	  about	  system	  



Wrap	  up	  
Get	  familiar	  with	  reference	  approaches	  for	  

architecture-‐based	  self-‐adaptaMon	  

•  MAPE-‐K	  reference	  model	  
– MAPE:	  primary	  funcMons	  to	  realize	  self-‐adaptaMon	  
–  K:	  domain	  models	  	  

•  Rainbow	  framework	  maps	  reference	  model	  to	  
concrete	  architecture	  and	  implementaMon	  

•  3	  layer	  model	  of	  Kramer	  and	  Magee	  
–  Component	  control	  –	  adaptaMon	  management	  –	  goal	  
management	  	  

•  FORMS:	  rigorous	  specified	  model	  that	  integrates	  
different	  perspecMves	  on	  self-‐adaptaMon	  	  



Wrap	  up	  
Get	  familiar	  with	  state	  of	  the	  art	  formal	  

methods	  in	  self-‐adapMve	  systems	  

•  VerificaMon	  at	  construcMon	  Mme	  to	  provide	  
guarantees	  about	  system	  goals	  

•  Model	  driven	  approaches	  to	  guarantee	  
conformance	  between	  models	  and	  
implementaMon	  

•  Recent	  years	  a	  clear	  trend	  towards	  the	  
applicaMon	  of	  formal	  methods	  at	  runMme	  

•  DominaMng	  focus	  on	  probabilisMc	  models	  of	  the	  
domain	  

•  Main	  focus	  on	  “parametric	  uncertainty”	  (e.g.,	  
reliability	  of	  services	  change	  over	  Mme)	  



Wrap	  up	  
Understand	  the	  challenges	  on	  formal	  methods	  

at	  runMme	  for	  self-‐adapMve	  systems	  

•  Guaranteeing	  domain	  goals	  under	  uncertainty	  
is	  one	  part	  of	  assurances	  of	  self-‐adaptaMon	  	  

•  Guaranteeing	  correct	  adaptaMon	  behavior	  is	  
the	  other	  part	  (lack	  of	  a8enMon	  so	  far)	  

•  Need	  for	  soluMons	  that	  deal	  with	  “structural	  
uncertainty”	  	  
–  i.e.,	  unanMcipated	  change;	  e.g.,	  change	  goals	  	  

•  Scalable	  runMme	  verificaMon	  
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