Availability Modelling of a Virtual Black-Box for Automotive Systems

Ossama Hamouda, Mohamed Kaâniche, Karama Kanoun

SERENE-2010 2nd International Workshop on Software Engineering for Resilient Systems 15-16 April 2010, Birkbeck College, London, UK

Context

Wireless and mobile technologies for automotive applications

- Car-to-car communication with server-based infrastructure
- □ Increase traffic capacity and safety
- Dependability challenges: design and assessment

Challenges

Dynamicity/mobility

changing topologies and communication characteristics

Heterogeneity

- different technologies and QoS characteristics
- Complexity
 - large number of components and interactions
 - multiple failure modes and fault classes
- Performance/dependability/security tradeoffs
 - Holistic dependability evaluation approach integrating analytic, simulation and measurement based techniques

Applications

□ Local hazard warning

 Information gathering and dissemination (congestion, state of the road, accident, etc.)

□ Platooning

Automated highway system

□ Virtual black box

Virtual Black Box Application (VBB)

□ Objective

- Collect relevant information related to a vehicle and its environment, in a manner similar to the black box of an aircraft
 - Replay historical data in the event of an accident
- Software-based data storage on the fixed infrastructure
- Need to protect data against accidental and malicious threats me use data replication

Dependability attributes

- Data availability
- Data integrity
- Data confidentiality

Scenario

- Data *Records* continuously collected and temporary stored on the vehicle
- □ VBB resident on the infrastructure
- □ To prevent data loss:
 - Data records are replicated and backed up on encountered cars (Participants)
 - Data stored on infrustructure when access available to Vehicle/Participants

When an accident occurs, the last *z* records gathered are sufficient to analyze the accident (or at least *r* among these *z*)

Data Records Replication

□ Replication strategies

- Replication by duplication
 - Create full copies of the data record
- Replication by fragmentation: Erasure codes
 - Suitable to ensure data availability and confidentiality

□ Erasure code (n, k)

- Generates n fragments of the data record that are disseminated to encountered cars.
- k fragments are sufficient to restore the original record
- (n-k) fragments loss can be tolerated (besides original record)
- n = k =1: replication by duplication
- k 77 m confidentiality 77

Dependability Modeling

VBB unavailability assessment

□ Sensitivity analyses

- Replication strategy: n, k
- Number of records to analyze an accident: z, r
- Other parameters
 - Rate of data loss (Vehicle /Participants): failure rate λ
 - Car-to-Car encounter rate : α
 - Car-to-Infrastructure connection rate: β

□ Two step approach

- Connectivity dynamics analysis
 - C2C and C2I encounter distributions and connection rates
- Availability modeling based on stochastic models using the results of the connectivity analyses as an input

Analysis of connectivity dynamics

□ Techniques

- Analytical proofs
- Simulation
- Processing of publicly available mobility traces
 - CRAWDAD: http://crawdad.cs.dartmouth.edu
 - Multi-agent Traffic simulator developed by ETH Zürich http://www.lst.inf.ethz.ch/research/ad-hoc/car-traces

□ Conclusions

- C2C encounter times Distribution
 - Freeways: Exponential
 - Urban traffic: Pareto
- C2I encounter times Distribution
 - Exponential

Simulation of a freeway scenario

- Cars move independently according to speed distribution f(v)
 - opposite directions on upper and lower half
- Uniform Initial placement of cars (ρ: car density)
- Fixed communication radius for the cars: *R*

Example of results: freeway mobility scenarios

Exponential distribution well suited to describe C2C and C2I encounter times

Urban mobility scenarios

Pareto provides a better fit than the exponential distribution

Virtual Black Box availability modeling

Unavailability measure: UA

- Probability of data loss:
 - more than r data records among last generated z records lost
- Modeling assumptions
 - Failures: Data records loss times (Vehicle/Participants)
 - Exponentially distributed with rate λ
 - Mobility scenarios:
 - C2C encounter times:
 - Exponentially distributed with rate α (Freeways)
 - Pareto distributed (Urban traffic)
 - C2I encounter times: exponentially distributed with rate β

□ Modelling formalism

- Stochastic Activity Networks (SANs)
- Möbius tool

System Model

Single data record behavior:

- data loss
- Replication and storage at infrastructure

One_record submodel

Record generation submodel

Severity submodel

SAN composed model

Results and sensitivity analysis

□ Parameters

α	The vehicle-to-vehicle encounter rate
β	The connection rate to the fixed-infrastructure
	The connectivity ratio = α/β (the rates at which
c	vehicles meet relative to the rate at which
	connection to the fixed-infrastructure is possible)
λ	The rate at which data losses occur, on the
	Vehicle and the participants side (failure rate)
n, k	Parameters of the erasure code
	Define the accuracy required of the historical
r, z	information to analyse what happened when an
	accident occurs

Unavailability of one data record

Exponential vs Pareto

Unavailability of one data record

 \Box Impact of the replication strategy: UA(1,1)/UA(n,k)

Exponential C2C encounters, c=100

Pareto C2C encounters, c=100

VBB Unavailability

□ Loss of multiple records

r among the last z generated records are needed to analyze what happened when an accident occur

VBB Unavailability: impact of z

Exponential C2C encounters, c=100

VBB Unavailability

□ Replication by duplication vs no replication

Virtual Black Box: Summary

Combined modeling approach integrating dependability and connectivity dynamics

Sensitivity analyses

- Replication strategies under different mobility scenarios
 - Replication vs No replication: significant improvement
 - Duplication vs Erasure coding: same order of magnitude
- Exponential vs Pareto distributed C2C encounters
 - Unavailability estimation may differ slightly (*a few times*) depending on the connectivity ratio and the failure rate

□ Other applications:

platooning