Modelling and Analysing Resilience as a Security Issue within UML

Ricardo J. Rodríguez, José Merseguer and Simona Bernardi {rjrodriguez, jmerse}@unizar.es, bernardi@di.unito.it

Universidad de Zaragoza Zaragoza, Spain

Università di Torino Torino, Italy

15th April 2010

SERENE'10: 2nd International Workshop on Software Engineering for Resilient Systems Birkbeck College (London, United Kingdom)

Outline

- Introduction
- 2 Background

3 SecAM profile

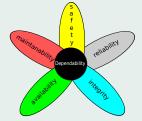
- Resilience package
- Building the profile

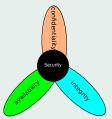
4 Example

- System physical view and class diagram
- UML state-charts

Obtaining a formal model

- Conversion of UML-SC into Petri nets
- Discussion of the obtained Petri net
- 6 Experiments and results
 - Experiments
 - Results
 - Discussion of results
 - 7 Related work and conclusions
 - Related work
 - Conclusions and future work


Introduction (I)


- Security requirements: not ever globally considered
- Broad and heterogeneous field (hardware issues, coding bugs...)
- Non-functional properties (NFPs)
- Necessity of common framework to deal with such heterogeneity
- UML: well-known solution and comprehensive modelling language
- Tailored for specific purposes: profiling
- MARTE profile
 - Performance and schedulability analysis for RT and embedded systems
- Dependability and Analysis Modelling (DAM), non-standard profile
 - The same for dependability NFPs
- MARTE + DAM: performance and/on dependability requirements

 \rightarrow enlighten for security specification?

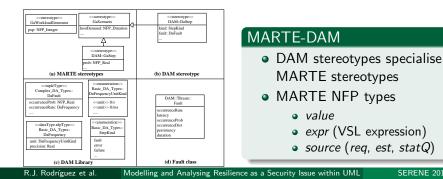
Introduction (II)

• Relation between dependability-security

- Security specification \subset MARTE-DAM framework
- MARTE-DAM: stereotypes and tagged values to express NFPs
 - Attached to those UML model elements they affect
- Security Analysis and Modelling (SecAM) profile → security NFPs

R.J. Rodríguez et al. Modelling and Analysing Resilience as a Security Issue within UML

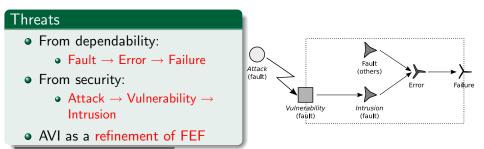
Avizienis, A. et al. Basic Concepts and Taxonomy of Dependable and Secure Computing. TDSC, 2004


Background

MARTE: Modelling and Analysis of RT Embedded systems

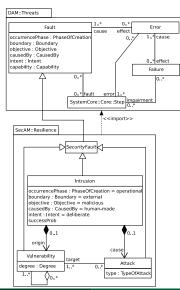
- UML lightweight extension
- Provides support for schedulability and performance analysis ۵.

SERENE 2010


- NFPs with VSL (Value Specification Language) syntax
- ٩ Design model element extending its semantic

SecAM profile (I): Resilience package (1)

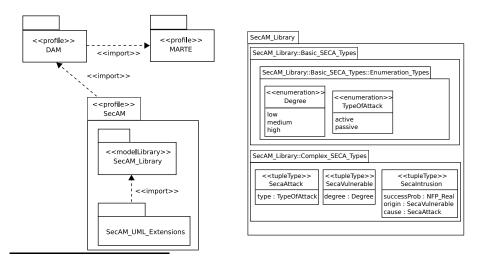
Domain model definition


- Comprehensive modelling of security issues
- Domain model for each relevant security aspects
 - e.g., confidentiality, resilience or integrity
- In this work: *Resilience* package

Veríssimo, P. et al. Intrusion-Tolerant Architectures: Concepts and Design. LNCS, 2003

R.J. Rodríguez et al. Modelling and Analysing Resilience as a Security Issue within UML

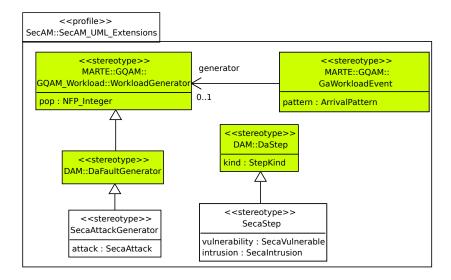
SecAM profile (I): *Resilience* package (2)


• Fault class from DAM::Threats: extension with new attributes

DAM::DAM_Library:Basic_DA_Types::Enumeration_Types						
< <enumeration>></enumeration>	< <enumeration>></enumeration>	< <enumeration>></enumeration>				
Intent	Capability	Objective				
deliberate	accidental	malicious				
non-deliberate	incompetence	non-malicious				
< <enumeration>></enumeration>	< <enumeration>></enumeration>	< <enumeration>></enumeration>				
Boundary	PhaseOfCreation	CausedBy				
internal	development	natural				
external	operational	human-made				
	< <enumeration>> StepKind</enumeration>					
	error failure hazard reallocation replacement vulnerable intrusion					

R.J. Rodríguez et al

SecAM profile Building the profile


SecAM profile (II): building the profile (1)

Lagarde, F. et al. Improving UML Profile Design Practices by Leveraging Conceptual Domain Models. ASE, 2007

R.J. Rodríguez et al. Modelling and Analysing Resilience as a Security Issue within UML

SecAM profile (II): building the profile (2)

Figure: SecAM UML extensions

Example (I): system physical view and class diagram

Monitor		1*	Process
timeOut : int	observer	proc	
create() : void setTimeOut() : void countDown() : void			create() : void destroy() : void attendMessage() : void processMessage() : void

Figure: Class diagram

Figure: System physical view

- How to use SecAM from a use of view
- Advanced firewall: integrates a monitor
 - Exposed to attacks \rightarrow vulnerable
 - Attend messages from WAN and forwarded them to LAN
 - Critical information systems (e.g. MAFTIA, CRUTIAL, OASIS)
- Monitor
 - Tamper-proof embedded system \rightarrow invulnerable
 - Its mission: to check firewall processes and to clean up those hung

Example (II): UML state-charts (1)

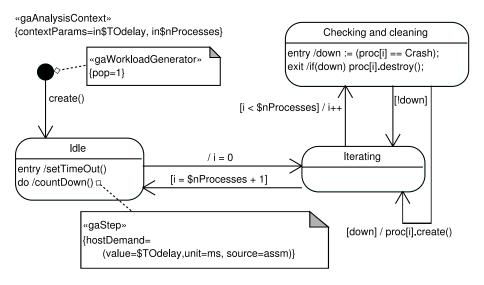
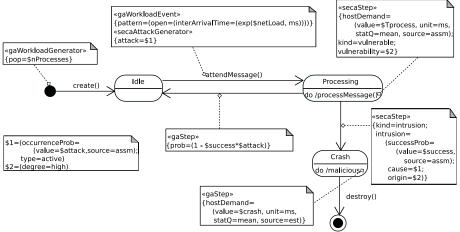



Figure: Monitor state-chart diagram.

Example (II): UML state-charts (2)

«gaAnalysisContext»

{contextParams={in\$nProcesses, in\$netLoad, in\$success, in\$attack, in\$TProcess, out\$crash}}

Figure: Process state-chart diagram.

Obtaining a formal model (I): Conversion of UML-SC

- Translation proposed by Merseguer et al. (WODES'02)
- Given for performance analysis purposes \rightarrow minor changes will arise
- ArgoSPE tool: UML-SC annotated with SPT (precursor of MARTE)
- General ideas:
 - SC simple state \rightarrow PN place
 - $\bullet~$ Entry and exit actions $\rightarrow~$ immediate transitions
 - $\bullet~$ Do-activity actions $\rightarrow~$ timed transitions
 - Conflicting transitions: in stochastic way (probabilities)
- Communication via events \rightarrow PN places modelling event mailboxes
- Working out the PN to incorporate DAM and SecAM annotations
- Open workload: manually produced
- Simplified the subnets → gaining readability

Obtaining a formal model (II): Obtained DSPN

Place	Initial marking	Value
P4 Idle	nProcesses	6

Transition		Parameter (type)		Value(s)
T1 NetworkLoad		1/netload (rate)		0.01, 0.05, 0.1/ms
T3 process Message		1/Tprocess (rate)		0.2/ms
T8 TimeOut		TOdelay (delay)		1, 100ms
t4 Intrusion	usion a		ck · success (we	ight)
t5 NonIntrusi	on	1 — attack · success		s (weight)
	Parameter attack success		Values	
			0.01 0.5	
			[0.01 0.5]	

Merseguer, J. et al. A Compositional Semantics for UML State Machines Aimed at Performance Evaluation. WODES, 2002

R.J. Rodríguez et al. Modelling and Analysing Resilience as a Security Issue within UML

Description of the experiments

Availability

• At DSPN model level:

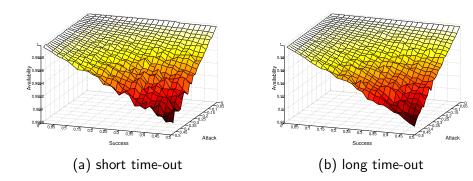
$$\frac{MTTF}{MTTF + MTTDI} = 1 - \frac{E[P5|Crash]}{N}$$

- MTTF: Mean Time To Failure
- MTTDI: Mean Time To Detect an Intrusion
- *E*[*P_i*]: mean number of tokens in place *P_i*
- P5|Crash: unavailable state of the process
- Under different assumptions:
 - Three types of network loads: low, high, very high (0.01, 0.05, 0.1/ms)
 - Two types of time-out durations: short, long (1, 100 ms)
 - Probabilities of attacks and successful attacks from 1% up to 50%

(1)

Results

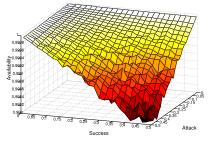
0.45 0.5 0


Attack

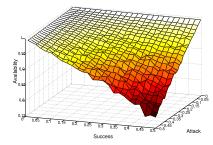
Results (I): under low workload

Experiments and results Results

Results (II): under high workload



SERENE 2010


Experiments and results

Results

Results (III): under very high workload

(a) short time-out

(b) long time-out

Discussion

Availability

- Inverse proportion to probability of attacks and of successful attacks
- Decreasing factor: sensitive to the network workload and monitor time-out assumptions
 - Higher for higher workloads and for longer time-out duration (e.g., 0.021% in case of low network workload and short time-out duration, 20.9% when very high network workload and long time-out duration)
- Incoming messages are potential attack carriers \rightarrow frequency of attacks increases from low to very high network workload \rightarrow higher availability decreasing factor
- \bullet Short time-out duration \rightarrow promptly detection \rightarrow higher availability
- Isolated hills close to 100% (low workload, short time-out)
 - Due to simulation accuracy (their height is lower than 0.01%)
- False alarms (i.e., time-out expires and no process is crashed)
 - Do not provoke side effects in the system

Related work and conclusions (I)

Related work

- SecureUML (T. Lodderstedt et al.)
 - Just focused on annotating static UML design models
- UMLsec (J. Jürjens)
 - Not worry on influence on the throughput of the system

Both approaches focus on the design phase and allow model-checking

• Other work close (D. C. Petriu et al.)

- Not focussed on giving a unified framework
- Dependability and SPNs
 - A. E. Rugina et al.
 - Exclusively for the dependability field
 - Very bound to AADL (Architecture Analysis & Design Language)
 - Several works of Bondavalli et al.
 - Dependability attributes in early design phases of the system
 - Construct a Timed PN using graph transformation techniques in structural UML diagrams

Related work and conclusions (II)

Conclusions

- Proposal profile ⊂ MARTE-DAM profile
- Analysis of relevant dependability-security aspects
- Considering the system performance characteristics
 - e.g., to measure the real impact of introducing more security layers

Future work

. . .

- Tools supporting the SecAM approach
 - Reuse of existing tools for UML and MARTE
- Effort focused on the security analysis on top of existing tool sets
- Extend SecAM adding more security fields to its domain
 - Easy fit: SecAM-MARTE-DAM fit already done

Modelling and Analysing Resilience as a Security Issue within UML

Ricardo J. Rodríguez, José Merseguer and Simona Bernardi {rjrodriguez, jmerse}@unizar.es, bernardi@di.unito.it

Universidad de Zaragoza Zaragoza, Spain

Università di Torino Torino, Italy

15th April 2010

SERENE'10: 2nd International Workshop on Software Engineering for Resilient Systems Birkbeck College (London, United Kingdom)