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Overview – Problem
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Developing distributed, reactive 
applications is hard
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Developing reliable, distributed, 
reactive applications is even harder!
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Overview – Solution
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• Decompose application into building 
blocks encapsulating distribution
• Allow for an idealized specification (no 

operational faults) to be developed first

• Add encapsulated fault-
tolerance mechanisms in a 
second step

• Use tools for fault removal 
at every step
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Scope: Unreliable channels
Add timeouts to detect possible message loss

ready

Input

wait_response

Request

wait_response 2

Response

Request 2

ready

Input

wait_response

Request

wait_response 2

Response

Request 2

message_lost

giveUpTimer

start giveUpTimer(1s)

doSomething()

4

Thursday, 15 April, 2010



Message loss detection
– the size problem
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Example – ACS
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Example – ACS
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Transmission semantics
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Extended SPACE Method
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Encapsulated message loss 
detection
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Notify R
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Example – Reliable 
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Reliable Inquiry
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Summary
• Problem: Developing reliable, distributed, reactive 

applications is hard
• Solution: 
• Decompose applications into building blocks 

encapsulating distribution
• Allow for an idealized specification (no 

operational faults) to be developed first
• Add encapsulated fault-tolerance mechanisms 

in a second step
• Use tools for fault removal at every step
• Scope of this paper: Unreliable channels
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Questions for the future

• Should we check application-specific 
(liveness) properties?

• Is the separation of concerns good enough 
with bigger systems?

• Can we extend this to software fault 
tolerance?

• What to put at application layer as building 
blocks?
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