
Towards a Model-Driven Method 
for Reliable Applications:

From Ideal to Realistic Transmission Semantics

Vidar Slåtten, Frank Alexander Kraemer and Peter Herrmann
Department of Telematics 

Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway 
{vidarsl, kraemer, herrmann}@item.ntnu.no

Thursday, 15 April, 2010



Overview – Problem

local 
station

dc :Door Control

door

panel

pc :Panel Control

authorization
 server

a1 :Authenticate

a2 :Authorize

authentication 
server

central 
station

Developing distributed, reactive 
applications is hard

s_1

s_2

s_3

d1

s_4

d2

d3

d4

d5

d6

s_0

s_0

s_0

s_0

s_0

s_0

s_0

s_0

s_0

s_0

s_0

s_0

s_0

s_0

s_0

s_0s_0

s_4

s_4

s_4

s_2

s_2

s_2

s_1

s_1

s_1

s_3

s_3

s_3

s_0

s_0

s_0

s_0

s_2

s_2

s_1

s_1

receive a1Ack
start t0

timeout t1

timeout t0

timeout t2

receive a2

[a2==false]

[a2==true]

receive a1

[a1==false]

[a1==true]

timeout t3receive a2Ack
start t1

receive pid
start t4
start t3

send pidAck
send pidA1
send pidA2

timeout t4

receive a1Ack
start t0

timeout t0
start t2

send denied

timeout t2

receive a1
[a1==false]

start t2
send denied

[a1==true]
restart t2

send denied

receive a2Ack
start t1

timeout t4
start t2

send denied

receive a1Ack
start t0

timeout t1
start t2

send denied

timeout t2

receive a2
[a2==false]

start t2
send denied

[a2==true]
start t5
send ok

timeout t3
start t2

send denied

receive a2Ack
start t1

timeout t1
start t2

send denied

receive a1Ack
start t0

receive a2
[a2==true]

start t2
send denied

[a2==false]
start t2

send denied

timeout t2

receive a2Ack
start t1

timeout t3
start t2

send denied

receive a1Ack
start t0

timeout t0
start t2

send denied

timeout t2

receive a1
[a1==true]
restart t2
send ok

[a1==false]
restart t2

send denied

receive a2Ack
start t1

s_2

s_5

s_3

d1

s_4s_1

d2

d3d4d5 d6

s_0

s_0 s_0s_0 s_0s_0s_0 s_0s_0

receive a1

[a1==false] [a1==true]

receive a2

[a2==false] [a2==true]

receive a1

[a1==false]
s denied

[a1==true]
s denied

receive a2

[a2==false]
s denied

[a2==true]
s ok

receive a2

[a2==true]
s denied

[a2==false]
s denied

receive a1

[a1==true]
s ok

[a1==false]
s denied

receive pid
send pidA1
Send pidA2

Developing reliable, distributed, 
reactive applications is even harder!

2

Thursday, 15 April, 2010



Overview – Solution

Notify R
receiversender

in

out

ack

noAck

pid

ok

Authenticate

nok

validate

client server

ok

else

pid

ok

failed

Authenticate R

nok

validate

client server

n: Notify R
in

ack

noAck

out

ok

else

pid

ok

failed

Authenticate R

nok

validate

client server

n: Notify R
in

ack

noAck

out

ok

else

• Decompose application into building 
blocks encapsulating distribution
• Allow for an idealized specification (no 

operational faults) to be developed first

• Add encapsulated fault-
tolerance mechanisms in a 
second step

• Use tools for fault removal 
at every step

3

Thursday, 15 April, 2010



Scope: Unreliable channels
Add timeouts to detect possible message loss

ready

Input

wait_response

Request

wait_response 2

Response

Request 2

ready

Input

wait_response

Request

wait_response 2

Response

Request 2

message_lost

giveUpTimer

start giveUpTimer(1s)

doSomething()

4

Thursday, 15 April, 2010



Message loss detection
– the size problem

s_2

s_5

s_3

d1

s_4s_1

d2

d3d4d5 d6

s_0

s_0 s_0s_0 s_0s_0s_0 s_0s_0

receive a1

[a1==false] [a1==true]

receive a2

[a2==false] [a2==true]

receive a1

[a1==false]
s denied

[a1==true]
s denied

receive a2

[a2==false]
s denied

[a2==true]
s ok

receive a2

[a2==true]
s denied

[a2==false]
s denied

receive a1

[a1==true]
s ok

[a1==false]
s denied

receive pid
send pidA1
Send pidA2

s_1

s_2

s_3

d1

s_4

d2

d3

d4

d5

d6

s_0

s_0

s_0

s_0

s_0

s_0

s_0

s_0

s_0

s_0

s_0

s_0

s_0

s_0

s_0

s_0s_0

s_4

s_4

s_4

s_2

s_2

s_2

s_1

s_1

s_1

s_3

s_3

s_3

s_0

s_0

s_0

s_0

s_2

s_2

s_1

s_1

receive a1Ack
start t0

timeout t1

timeout t0

timeout t2

receive a2

[a2==false]

[a2==true]

receive a1

[a1==false]

[a1==true]

timeout t3receive a2Ack
start t1

receive pid
start t4
start t3

send pidAck
send pidA1
send pidA2

timeout t4

receive a1Ack
start t0

timeout t0
start t2

send denied

timeout t2

receive a1
[a1==false]

start t2
send denied

[a1==true]
restart t2

send denied

receive a2Ack
start t1

timeout t4
start t2

send denied

receive a1Ack
start t0

timeout t1
start t2

send denied

timeout t2

receive a2
[a2==false]

start t2
send denied

[a2==true]
start t5
send ok

timeout t3
start t2

send denied

receive a2Ack
start t1

timeout t1
start t2

send denied

receive a1Ack
start t0

receive a2
[a2==true]

start t2
send denied

[a2==false]
start t2

send denied

timeout t2

receive a2Ack
start t1

timeout t3
start t2

send denied

receive a1Ack
start t0

timeout t0
start t2

send denied

timeout t2

receive a1
[a1==true]
restart t2
send ok

[a1==false]
restart t2

send denied

receive a2Ack
start t1

14 transitions 40 transitions

5

Thursday, 15 April, 2010



Example – ACS

local 
station

dc :Door Control

door

panel

pc :Panel Control

authorization
 server

a1 :Authenticate

a2 :Authorize

authentication 
server

central 
station

6

Thursday, 15 April, 2010



Example – ACS
«system»

Access Control System
panel central stationlocal station

door

authentication 
server

authorization 
server

pc: 
Panel Control

start

nok

pid

ok
reset

dc: 
Door Control

closed

open

a1: 
Authenticate
pid

ok

nok

a2: 
Authorize

pid

ok

nok

a: And

true

false true1

false1

true2

false2

7

Thursday, 15 April, 2010



active

/nok

pid/

/ok

«esm» Authenticate

Example – Authenticate

8

pid

ok

Authenticate

nok

validate

client server

ok

else

Thursday, 15 April, 2010



pid

ok

Authenticate

nok

validate

client server

ok

else

Transmission semantics

9

Ideal Transmit
in out

Ideal Transmit
inout

«esm» Ideal Transmit

in/ /out
sending

Thursday, 15 April, 2010



pid

ok

Authenticate

nok

validate

client server

ok

else

Transmission semantics

10

Ideal Transmit
in out

Ideal Transmit
inout

«esm» Ideal Transmit

in/ /out
sending

Thursday, 15 April, 2010



validate

client server

ok

Transmission semantics

11

in out

lost

Real Transmit

inout

lost

Real Transmit

«esm» Real Transmit

in/ /out
sending

/lost

Thursday, 15 April, 2010



Extended SPACE Method

12

Sr Reliable Specification

Fault-Tolerance Domain

A2: Analysis with Realistic
Transmission Semantics

!"

Domain 
Expert

D2: Design and Integration of 
Fault-Tolerance Mechanisms

Fault- 
Tolerance
Library

Fault- 
Tolerance

Expert

Transformation to Components 
and State Machines

Implementation via 
Code Generation

Idealized SpecificationSi

Application Domain

A1: Analysis with Ideal
Transmission Semantics

!"

Domain 
Experts

D1: Design and Integration of 
Functionality

Domain-Specific 
Libraries

Thursday, 15 April, 2010



Encapsulated message loss 
detection

13

Notify R
receiversender

in

out

ack

noAck

Thursday, 15 April, 2010



Notify R
receiversender

in

out

ack

noAck

pid

ok

failed

Authenticate R

nok

validate

client server

n: Notify R
in

ack

noAck

out

ok

else

Example – Reliable 
Authenticate (wrong)

14

Thursday, 15 April, 2010



Example – Reliable 
Authenticate

pid

ok

failed

Authenticate R

nok

validate

client server

n: Notify R
in

ack

noAck

out

ok

else

15

Thursday, 15 April, 2010



Reliable Inquiry

requestIn

failed

Inquiry R
requester responder

n: Notify R
in

ack

noAck

out
requestOut

responseInresponseOut

16

Thursday, 15 April, 2010



Summary
• Problem: Developing reliable, distributed, reactive 

applications is hard
• Solution: 
• Decompose applications into building blocks 

encapsulating distribution
• Allow for an idealized specification (no 

operational faults) to be developed first
• Add encapsulated fault-tolerance mechanisms 

in a second step
• Use tools for fault removal at every step
• Scope of this paper: Unreliable channels

17

Thursday, 15 April, 2010



Questions for the future

• Should we check application-specific 
(liveness) properties?

• Is the separation of concerns good enough 
with bigger systems?

• Can we extend this to software fault 
tolerance?

• What to put at application layer as building 
blocks?

18

Thursday, 15 April, 2010


