
Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Towards Reasoning About
Teleo-Reactive Programs

Ian J. Hayes

School of ITEE School of Computing Science
The University of Queensland University of Newcastle

Brisbane, 4072, Australia Newcastle, UK
Until Jan 2009

Email: ianh@itee.uq.edu.au

Serene Presentation 19 November 2008

Resilience: an audience that turns up the morning after the
conference dinner



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Overview

Overview

Teleo-reactive programming was invented by Nils Nilsson
[6, 7, 8]. We

extend teleo-reactive programs with non-determinism
develop a time-interval semantics
develop rely/guarantee reasoning rules and
apply the rules to an example program

(Greek: telos: end, purpose)



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Overview

Teleo-reactive Programs

Teleo-reactive programs are described by a combination of
sensed values (inputs), or values derived or inferred from
sensed values,
primitive durative actions, i.e., actions that take time, and
processes defined via (durative) prioritised conditionals.



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Nilsson’s Tower program

Nilsson’s Tower Program

makeTower(s) — s is an non-empty list with no duplicates

Tower(s) → nil ,
Ordered(s) → unpile(head(s)),
Null(tail(s)) → move_to_table(head(s)),

Tower(tail(s)) → move(head(s), head(tail(s))),
true → makeTower(tail(s))

move_to_table(x) — x is a block

On(x , Ta) → nil ,
Holding(x) → put_down(x , Ta),

Clear(x) → pick_up(x),
true → unpile(x)



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Nilsson’s Tower program

move(x,y) — x and y are distinct blocks

On(x , y) → nil ,
Holding(x) ∧ Clear(y) → put_down(x , y),

Holding(z) ∧ x #= z → put_down(z, Ta),
Clear(x) ∧ Clear(y) → pick_up(x),

Clear(y) → unpile(x),
true → unpile(y)

unpile(x) — x is a block

Clear(x) → nil ,
On(y , x) → move_to_table(y)

pick_up and put_down are primitive actions.



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Mine Pump

Mine with sump

Low Water

High Water

Methane Detector



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Mine Pump

Mine with methane

Low Water

High Water

Methane Detector



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Mine Pump

Mine with methane - explodes if pump on

Low Water

High Water

Methane Detector



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Mine Pump

Mine Pump Example [3, 5, 4]

mine_pump

Critical ≤ methane → alarm,
true → operate

operate
(

water > High ∨
water > Low ∧ pump_active

)
→ pump,

true → nil

There are three sensed values:
the level of methane in the mine, methane,
the level of water in the mine, water , and
an indicator of whether the pump is active, pump_active.

It is not an Action System



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Mine Pump

Durative actions

alarmoperate alarm operate

Critical

Methane

∆

δ.1 δ.2 δ.3δ.0



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Mine Pump

Expanded Program

The above is equivalent to the following,

mine_pump

Critical ≤ methane → alarm,

true ∧
(

water > High ∨
water > Low ∧ pump_active

)
→ pump,

true ∧ true → nil

From this it is easy to see that the pump is only ever active
while the methane level is not critical and the water level is at
least above low.



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Mine Pump

Rely/Guarantee for the Pump

When the primitive action pump is active it guarantees

Pump guarantee

g_pump =̂ !(MinOut ≤ water_out ∧ pump_active)

but relies on

Pump rely

r_pump =̂ !(Low < water ∧methane < Critical)



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Nondeterminism

Nondeterminism choice for deterministic procedure

For example, the mine_pump procedure

mine_pump

Critical ≤ methane → alarm
&methane < Critical → operate

is equivalent to earlier:

mine_pump

Critical ≤ methane → alarm,
true → operate



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Nondeterminism

Nondeterminism

In general, the guard conditions of a nondeterministic choice do
not need to be mutually exclusive. The following

operate specification

water > Low → pump
& water ≤ High → nil

is refined by earlier:

operate
(

water > High ∨
water > Low ∧ pump_active

)
→ pump,

true → nil



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Nondeterminism

Conditional

A conditional

c0 → a0,
c1 → a1

is expanded to

c0 → a0
& ¬c0 ∧ c1 → a1
& ¬c0 ∧ ¬c1 → chaos



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Traces, Intervals and Predicates

Timed traces and intervals

The semantics of a teleo-reactive program are given by
specifying its set of behaviours over a given time interval.
A behaviour is a trace of the values of program’s variables over
time.
If c is a predicate (condition) on the state of the program
variables, we use the notation !c as a predicate over a time
interval, ∆, that states that condition c holds at all times in ∆,
i.e., (!c).∆ .



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Behaviours

Basic Behaviours

For a predicate c; actions a, a0, a1; and a time interval ∆

bbeh

bbeh.chaos.∆ =̂ True (1)
bbeh.(c → a).∆ =̂ (!c).∆ ∧ beh.a.∆ (2)

bbeh.(a0 & a1).∆ =̂ bbeh.a0.∆ ∨ bbeh.a1.∆ (3)



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Behaviours

Behaviours

beh

beh.a.∆ =̂ ∃δ : part .∆ • ∀i : dom .δ • bbeh.a.(δ.i) (4)

A partition for “c0 → a0, c1 → a1”

a1 a0 a1 a0

∆

δ.1 δ.2 δ.3

!c1 !c0

δ.0

!c0!c1

We use the notation part .∆ for the set of all partitions of an
interval ∆.



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Rely/guarantee

Satisfying a Rely/Guarantee Pair

rely

guarantee

beh.a

Definition (Satisfies)

An action, a, satisfies a rely/guarantee pair, written “r {a} g”, if
all behaviours of a for which the rely condition holds also satisfy
the guarantee condition, i.e.,

beh.a ∧ r " g



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Rely/Guarantee Rules

Basic Rely/Guarantee Theorem

Theorem (Basic rely/guarantee)

For rely conditions r and r ′, guarantee conditions g and g′, and
an action a, if

r " r ′

r ′ {a} g′

g′ ∧ r " g

then
r {a} g



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Rely/Guarantee Rules

Guarded Actions

Theorem (Guarded action)

For a rely condition r , a guarantee condition g, a predicate c,
and an action a,

r {c → a} g ≡ (!c ∧ r) {a} g



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Rely/Guarantee Rules

Decomposing (Rely) Conditions

Definition (Decomposes)

A (rely) condition, r , decomposes over intervals if whenever r
holds for an interval ∆, it holds for its subintervals:

∀∆,∆′ : Interval • ∆′ ⊆ ∆ ∧ r .∆ " r .∆′

For example, !c decomposes over intervals,
but r .∆ =̂ length.∆ ≥ 10 does not.



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Rely/Guarantee Rules

Composing (Guarantee) Conditions

Definition (Composes)

A (guarantee) condition, g, composes over intervals if whenever
g holds for every subinterval in a partition δ of ∆, it holds for ∆:

∀∆ : Interval • ∀δ : part .∆ •
(∀i : dom .δ • g.(δ.i)) " g.∆

For example, !c composes over intervals,
and hence !(x = 0 ∨ x = 1) composes
but !(x = 0) ∨!(x = 1) does not.



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Rely/Guarantee Rules

Nondeterminism

Theorem (Nondeterminism)

For rely condition r that decomposes over intervals, guarantee
condition g that composes over intervals, and actions a0 and
a1,

r {a0 & a1} g

provided
(r {a0} g) ∧ (r {a1} g)



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Rely/Guarantee Rules

Two-Branch Conditional

Theorem (Conditional)

For a rely condition, r , that decomposes over intervals, a
guarantee condition, g, that composes over intervals,
predicates, c0 and c1, actions, a0 and a1,

r {c0 → a0, c1 → a1} g

provided

((!c0) ∧ r) {a0} g (5)
(!(¬c0 ∧ c1) ∧ r) {a1} g (6)

r " !(c0 ∨ c1) (7)

The above theorem can be generalised.



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Mine Pump

Example: Mine Pump

water the level of water in the mine shaft
dwater

dt the derivative of the water level with respect to
time, i.e., the rate of change of the water level.

water_in the rate of flow of water into the mine
water_out the rate of flow of water out of the mine

Rely condition for mine pump system

r =̂ !




dwater

dt = water_in − water_out ∧
0 ≤ water_out ∧
0 ≤ water_in ≤ MaxIn







Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Mine Pump

Pump

When the primitive action pump is active it guarantees

Guarantee for pump

g_pump =̂ !(MinOut ≤ water_out ∧ pump_active)

but relies on

Rely for pump

r_pump =̂ !(Low < water ∧methane < Critical)



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Mine Pump

Guarantee

We would like to show our mine pump system guarantees

Guarantee for the mine pump system

g =̂ !




methane < Critical ∧ High < water
=⇒
dwater

dt ≤ MaxIn −MinOut





which, provided that MaxIn < MinOut , guarantees that the
water level will decrease.



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Proof

Mine Pump Rely/Guarantee

mine_pump

Critical ≤ methane → alarm,
true → operate

satisfies the rely/guarantee pair, i.e.,

r {mine_pump} g

provided

(!(Critical ≤ methane) ∧ r) {alarm} g
(!(methane < Critical) ∧ r) {operate} g

r " !(Critical ≤ methane ∨ true)



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Proof

(!(Critical ≤ methane) ∧ r) {alarm} g (8)
(!(methane < Critical) ∧ r) {operate} g (9)

r " !(Critical ≤ methane ∨ true) (10)

Requirement (10) holds trivially.
Requirement (8) holds because Critical ≤ methane is the
complement of methane < Critical used on the left side of the
implication within g.



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Proof

For requirement (9) we need to show procedure operate

operate
(

water > High ∨
water > Low ∧ pump_active

)
→ pump,

true → nil

satisfies

(!(methane < Critical) ∧ r) {operate} g

Let c be the guard on the first branch of procedure operate.
The conditions we need to show are

(!(c ∧methane < Critical) ∧ r) {pump} g
(!(¬c ∧methane < Critical) ∧ r) {nil} g
!(methane < Critical) ∧ r " !(c ∨ true)



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Proof

(!(c ∧methane < Critical) ∧ r) {pump} g (11)
(!(¬c ∧methane < Critical) ∧ r) {nil} g (12)
!(methane < Critical) ∧ r " !(c ∨ true) (13)

Requirement (13) is trivial.
For (12), the negation of c implies that water ≤ High, which
implies the left side of the implication in g is false.
Requirement (11) follows from the rely and guarantee
conditions of pump, provided

!(c ∧methane < Critical) ∧ r " r_pump
g_pump ∧!(c ∧methane < Critical) ∧ r " g



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Proof

!(c ∧methane < Critical) ∧ r " r_pump
g_pump ∧!(c ∧methane < Critical) ∧ r " g

The first requirement holds because c implies water > Low .
For the second requirement, from r we have

dwater
dt = water_in − water_out

" as g_pump implies MinOut ≤ water_out
dwater

dt ≤ water_in −MinOut
" as r implies water_in ≤ MaxIn

dwater
dt ≤ MaxIn −MinOut



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Conclusions

Conclusions

The teleo-reactive programming paradigm of Nilsson provides a
remarkably simple notation for expressing robust real-time
control programs. In this paper we have

developed a time-interval semantics for teleo-reactive
programs and
provided rely/guarantee reasoning rules that have been
shown correct with respect to these rules.



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

Conclusions

Future Work

For some teleo-reactive programs guarded actions may only be
active for an instant during which time they change the state to
disable themselves. There are two approaches we can follow to
address these instantaneous actions, either

enrich our semantics to allow a finite number of
instantaneous actions to happen at the same real time, or
make use of the notion of time bands [2, 1].

For the latter, a system description can be structured into a
number of time bands each with its timing precision. At a
higher-level time band an action may be considered
instantaneous if it is within the precision of the band, but within
a lower level band the same action may be viewed as taking
time.



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

References

References

G. Baxter, A. Burns, and K. Tan.
Evaluating timebands as a tool for structuring the design of
socio-technical systems.
In P. Bust, editor, Contemporary Ergonomics 2007, pages
55–60. Taylor and Francis, 2007.

A. Burns and G. Baxter.
Time bands in systems structure, pages 74–88.
Springer-Verlag, 2006.



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

References

A. Burns and A. Lister.
A framework for building dependable systems.
Computer Journal, 34(2):173–181, 1991.

M. Joseph, editor.
Real-time Systems: Specification, Verification and
Analysis.
Prentice Hall, 1996.

B. P. Mahony and I. J. Hayes.
A case-study in timed refinement: A mine pump.
IEEE Trans. on Software Engineering, 18(9):817–826,
1992.



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

References

N. Nilsson.
Teleo-reactive programs for agent control.
Journal of Artificial Intelligence Research, 1:139–158,
1994.
N. J. Nilsson.
Teleo-reactive programs and the triple-tower architecture.
Electronic Transactions on Artificial Intelligence, 5:99–110,
2001.
N. Nilsson.
Teleo-reactive programming web site, Last accessed 2008.
http://robotics.stanford.edu/users/nilsson/trweb/tr.html.



Teleo-Reactive Programs Semantics of T-R Programs Reasoning about T-R Programs Example Conclusions

References

Acknowledgments

This paper has benefited from my collaborations with members
of IFIP Working Group 2.3 on Programming Methodology as
well as Cliff Jones, Alan Burns, and Keith Clark (who
introduced me to teleo-reactive programming). This research
was supported by Australian Research Council (ARC)
Discovery Grant DP0558408, Analysing and generating
fault-tolerant real-time systems and the EPSRC-funded
Trustworthy Ambient Systems (TrAmS) Platform Project.


	Teleo-Reactive Programs
	Overview
	Nilsson's Tower program
	Mine Pump
	Nondeterminism

	Semantics of T-R Programs
	Traces, Intervals and Predicates
	Behaviours

	Reasoning about T-R Programs
	Rely/guarantee
	Rely/Guarantee Rules

	Example
	Mine Pump
	Proof

	Conclusions
	Conclusions
	References
	Action Systems


